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Preface

Stata is an exciting statistical package that offers all standard and
many non-standard methods of data analysis. In addition to general
methods such as linear, logistic and Poisson regression and generalized
linear models, Stata provides many more specialized analyses, such as
generalized estimating equations from biostatistics and the Heckman
selection model from econometrics. Stata has extensive capabilities for
the analysis of survival data, time series, panel (or longitudinal) data,
and complex survey data. For all estimation problems, inferences can
be made more robust to model misspecification using bootstrapping or
robust standard errors based on the sandwich estimator. In each new
release of Stata, its capabilities are significantly enhanced by a team of
excellent statisticians and developers at Stata Corporation.

Although extremely powerful, Stata is easy to use, either by point-
and-click or through its intuitive command syntax. Applied researchers,
students, and methodologists therefore all find Stata a rewarding envi-
ronment for manipulating data, carrying out statistical analyses, and
producing publication quality graphics.

Stata also provides a powerful programming language making it easy
to implement a ‘tailor-made’ analysis for a particular application or to
write more general commands for use by the wider Stata community.
In fact we consider Stata an ideal environment for developing and dis-
seminating new methodology. First, the elegance and consistency of
the programming language appeals to the esthetic sense of methodol-
ogists. Second, it is simple to make new commands behave in every
way like Stata’s own commands, making them accessible to applied re-
searchers and students. Third, Stata’s emailing list Statalist, The Stata
Journal, the Stata Users’ Group Meetings, and the Statistical Software
Components (SSC) archive on the internet all make exchange and dis-
cussion of new commands extremely easy. For these reasons Stata is
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constantly kept up-to-date with recent developments, not just by its
own developers, but also by a very active Stata community.

This handbook follows the format of its two predecessors, A Hand-
book of Statistical Analysis using S-PLUS and A Handbook of Statistical
Analysis using SAS. Each chapter deals with the analysis appropriate
for a particular application. A brief account of the statistical back-
ground is included in each chapter including references to the litera-
ture, but the primary focus is on how to use Stata, and how to interpret
results. Our hope is that this approach will provide a useful comple-
ment to the excellent but very extensive Stata manuals. The majority
of the examples are drawn from areas in which the authors have most
experience, but we hope that current and potential Stata users from
outside these areas will have little trouble in identifying the relevance
of the analyses described for their own data.

This third edition contains new chapters on random effects mod-
els, generalized estimating equations, and cluster analysis. We have
also thoroughly revised all chapters and updated them to make use of
new features introduced in Stata 8, in particular the much improved
graphics.

Particular thanks are due to Nick Cox who provided us with exten-
sive general comments for the second and third editions of our book,
and also gave us clear guidance as to how best to use a number of Stata
commands. We are also grateful to Anders Skrondal for commenting
on several drafts of the current edition. Various people at Stata Cor-
poration have been very helpful in preparing both the second and third
editions of this book. We would also like to acknowledge the usefulness
of the Stata Netcourses in the preparation of the first edition of this
book.

All the datasets can be accessed on the internet at the following
Web sites:

� http://www.stata.com/texts/stas3

� http://www.iop.kcl.ac.uk/IoP/Departments/
BioComp/stataBook.shtml

S. Rabe-Hesketh
B. S. Everitt
London
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Chapter 1

A Brief Introduction to

Stata

1.1 Getting help and information

Stata is a general purpose statistics package developed and maintained
by Stata Corporation. There are several forms or ‘flavors’ of Stata,
‘Intercooled Stata’, the more limited ‘Small Stata’ and the extended
‘Stata/SE’ (Special Edition), differing mostly in the maximum size of
dataset and processing speed. Each exists for Windows (98, 2000,
XP, and NT), Unix platforms, and the Macintosh. In this book, we
will describe Intercooled Stata for Windows although most features are
shared by the other flavors of Stata.

The base documentation set for Stata consists of seven manuals:
Stata Getting Started, Stata User’s Guide, Stata Base Reference Man-
uals (four volumes), and Stata Graphics Reference Manual. In addition
there are more specialized reference manuals such as the Stata Pro-
gramming Reference Manual and the Stata Cross-Sectional Time-Series
Reference Manual (longitudinal data analysis). The reference manuals
provide extremely detailed information on each command while the
User’s Guide describes Stata more generally. Features that are spe-
cific to the operating system are described in the appropriate Getting
Started manual, e.g., Getting Started with Stata for Windows.

Each Stata command has associated with it a help file that may be
viewed within a Stata session using the help facility. Both the help-files
and the manuals refer to the Base Reference Manuals by [R] name of
entry, to the User’s Guide by [U] chapter or section number and
name, the Graphics Manual by [G] name of entry, etc. (see Stata
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Getting Started manual, immediately after the table of contents, for a
complete list).

There are an increasing number of books on Stata, including Hamil-
ton (2004) and Kohler and Kreuter (2004), as well as books in German,
French, and Spanish. Excellent books on Stata for particular types
of analysis include Hills and De Stavola (2002), A Short Introduction
to Stata for Biostatistics, Long and Freese (2003), Regression Models
for Categorical Dependent Variables using Stata, Cleves, Gould and
Gutierrez (2004), An Introduction to Survival Analysis Using Stata,
and Hardin and Hilbe (2001), Generalized Linear Models and Exten-
sions. See http://www.stata.com/bookstore/statabooks.html for
up-to-date information on these and other books.

The Stata Web page at http://www.stata.com offers much use-
ful information for learning Stata including an extensive series of ‘fre-
quently asked questions’ (FAQs). Stata also offers internet courses,
called netcourses. These courses take place via a temporary mailing
list for course organizers and ‘attenders’. Each week, the course or-
ganizers send out lecture notes and exercises which the attenders can
discuss with each other until the organizers send out the answers to the
exercises and to the questions raised by attenders.

The UCLA Academic Technology Services offer useful textbook and
paper examples at http://www.ats.ucla.edu/stat/stata/, showing
how analyses can be carried out using Stata. Also very helpful for
learning Stata are the regular columns From the helpdesk and Speaking
Stata in The Stata Journal; see www.stata-journal.com.

One of the exciting aspects of being a Stata user is being part of
a very active Stata community as reflected in the busy Statalist mail-
ing list, Stata Users’ Group meetings taking place every year in the
UK, USA and various other countries, and the large number of user-
contributed programs; see also Section 1.11. Statalist also functions as
a technical support service with Stata staff and expert users such as
Nick Cox offering very helpful responses to questions.

1.2 Running Stata

This section gives an overview of what happens in a typical Stata ses-
sion, referring to subsequent sections for more details.

1.2.1 Stata windows

When Stata is started, a screen opens as shown in Figure 1.1 containing
four windows labeled:
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� Stata Command
� Stata Results
� Review
� Variables

Figure 1.1: Stata windows.

Each of the Stata windows can be resized and moved around in the
usual way; the Variables and Review windows can also be moved out-
side the main window. To bring a window forward that may be ob-
scured by other windows, make the appropriate selection in the Win-
dow menu. The fonts in a window can be changed by clicking on the
menu button on the top left of that window’s menu bar. All these
settings are automatically saved when Stata is closed.

1.2.2 Datasets

Stata datasets have the .dta extension and can be loaded into Stata in
the usual way through the File menu (for reading other data formats;
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see Section 1.4.1). As in other statistical packages, a dataset is a matrix
where the columns represent variables (with names and labels) and
the rows represent observations. When a dataset is open, the variable
names and variable labels appear in the Variables window. The dataset
may be viewed as a spreadsheet by opening the Data Browser with
the button and edited by clicking to open the Data Editor.
Both the Data Browser and the Data Editor can also be opened through
the Window menu. Note however, that nothing else can be done in
Stata while the Data Browser or Data Editor are open (e.g. the Stata
Command window disappears). See Section 1.4 for more information
on datasets.

1.2.3 Commands and output

Until release 8.0, Stata was entirely command-driven and many users
still prefer using commands as follows: a command is typed in the Stata
Command window and executed by pressing the Return (or Enter) key.
The command then appears next to a full stop (period) in the Stata
Results window, followed by the output.

If the output produced is longer than the Stata Results window,
--more-- appears at the bottom of the screen. Pressing any key scrolls
the output forward one screen. The scroll-bar may be used to move up
and down previously displayed output. However, only a certain amount
of past output is retained in this window. For this reason and to save
output for later, it is useful to open a log file; see Section 1.2.6.

Stata is ready to accept a new command when the prompt (a period)
appears at the bottom of the screen. If Stata is not ready to receive
new commands because it is still running or has not yet displayed all
the current output, it may be interrupted by holding down Ctrl and

pressing the Pause/Break key or by pressing the red Break button .
A previous command can be accessed using the PgUp and PgDn

keys or by selecting it from the Review window where all commands
from the current Stata session are listed (see Figure 1.1). The command
may then be edited if required before pressing Return to execute the
command.

Most Stata commands refer to a list of variables, the basic syntax
being command varlist. For example, if the dataset contains variables
x, y, and z, then

list x y

lists the values of x and y. Other components may be added to the
command; for example, adding if exp after varlist causes the com-
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mand to process only those observations satisfying the logical expres-
sion exp. Options are separated from the main command by a comma.
The complete command structure and its components are described in
Section 1.5.

1.2.4 GUI versus commands

Since release 8.0, Stata has a Graphical User Interface (GUI) that al-
lows almost all commands to be accessed via point-and-click. Simply
start by clicking into the Data, Graphics, or Statistics menus, make
the relevant selections, fill in a dialog box, and click OK. Stata then
behaves exactly as if the corresponding command had been typed with
the command appearing in the Stata Results and Review windows and
being accessible via PgUp and PgDn.

A great advantage of the menu system is that it is intuitive so that
a complete novice to Stata could learn to run a linear regression in
a few minutes. A disadvantage is that pointing and clicking can be
time-consuming if a large number of analyses are required and cannot
be automated. Commands, on the other hand, can be saved in a file
(called a do-file in Stata) and run again at a later time. In our opinion,
the menu system is a great device for finding out which command is
needed and learning how it works, but serious statistical analysis is best
undertaken using commands. In this book we therefore say very little
about the menus and dialogs (they are largely self-explanatory after
all), but see Section 1.8 for an example of creating a graph through the
dialogs.

1.2.5 Do-files

It is useful to build up a file containing the commands necessary to
carry out a particular data analysis. This may be done using Stata’s
Do-file Editor or any other editor. The Do-file Editor may be opened
by clicking or by selecting Do... from the File menu. Commands
can then be typed in and run as a batch either by clicking into in
the Do-file Editor or by using the command

do dofile

Alternatively, a subset of commands can be highlighted and executed
by clicking into . The do-file can be saved for use in a future Stata
session. See Section 1.10 for more information on do-files.
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1.2.6 Log files

It is useful to open a log file at the beginning of a Stata session. Press
the button , type a filename into the dialog box, and choose Save.
By default, this produces a SMCL (Stata Markup and Control Lan-
guage, pronounced ‘smicle’) file with extension .smcl, but an ordinary
ASCII text file can be produced by selecting the .log extension. If the
file already exists, another dialog opens to allow you to decide whether
to overwrite the file with new output or to append new output to the
existing file.

The log file can be viewed in the Stata Viewer during the Stata
session (again through ) and is automatically saved when it is closed.
Log files can also be opened, viewed, and closed by selecting Log from
the File menu, followed by Begin..., View..., or Close. The following
commands can be used to open and close a log file mylog, replacing the
old one if it already exists:

log using mylog, replace
log close

To view a log file produced in a previous Stata session, select File →
Log → View... and specify the full path of the log file. The log may
then be printed by selecting Print Viewer... from the File menu.

1.2.7 Getting help

Help may be obtained by clicking on Help which brings up the menu
shown in Figure 1.2. To get help on a Stata command, assuming the
command name is known, select Stata Command.... To find the
appropriate Stata command first, select Search... which opens up
the dialog in Figure 1.3. For example, to find out how to fit a Cox
regression, type ‘survival’ under Keywords and press OK. This opens
the Stata Viewer containing a list of relevant command names or topics
for which help files or Frequently Asked Questions (FAQs) are available.
Each entry in this list includes a blue keyword (a hyperlink) that may
be selected to view the appropriate help file or FAQ. Each help file
contains hyperlinks to other relevant help files. The search and help
files may also be accessed using the commands

search survival
help stcox

Help will then appear in the Stata Results window instead of the Stata
Viewer, where words displayed in blue also represent hyperlinks to other
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Figure 1.2: Menu for help.

Figure 1.3: Dialog for search.
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files.
If the computer running Stata is connected to the internet, you can

also search through materials on the internet, to find for instance user-
contributed programs by selecting ‘Search net resources’ in the search
dialog. The final selection, ‘Search all’ performs a search across the help
files, FAQs, and net materials. This is equivalent to using the findit
keyword command. More refined searches can be carried out using the
search command (see help search). The other selections in the help
dialog, News, Official Updates, SJ and User-written Programs,
and Stata Web Site all enable access to relevant information on the
Web (see Section 1.11 on keeping Stata up-to-date).

1.2.8 Closing Stata

Stata can be closed in three ways:

� click on the Close button at the top right-hand corner of
the Stata screen

� select Exit from the File menu
� type exit, clear in the Stata Commands window, and press

Return.

1.3 Conventions used in this book

In this book we will use typewriter font like this for anything that
could be typed into the Stata Command window or a do-file, that is,
command names, options, variable names, etc. In contrast, italicized
words are not supposed to be typed; they should be substituted by
another word. For example, summarize varname means that varname
should be substituted by a specific variable name, such as age, giving
summarize age. We will usually display sequences of commands as
follows:

summarize age
drop age

If a command continues over two lines, we use /* at the end of the first
line and */ at the beginning of the second line to make Stata ignore
the linebreak. An alternative would be to use /// at the end of the
line. Note that these methods are for use in a do-file and do not work
in the Stata Command window where they would result in an error. In
the Stata Command window, commands can wrap over several lines.
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Output taking very little space is displayed immediately following
the commands but without indentation and in a smaller font:

display 1

1

Output taking up more space is shown in a numbered display floating
in the text. Some commands produce little notes, for example, the
generate command prints out how many missing values are generated.
We will usually not show such notes.

1.4 Datasets in Stata

1.4.1 Data input and output

Stata has its own data format with default extension .dta. Reading
and saving a Stata file are straightforward. If the filename is bank.dta,
the commands are

use bank
save bank

If the data are not stored in the current directory, then the complete
path must be specified, as in the command

use c:\user\data\bank

However, the least error-prone way of keeping all the files for a particu-
lar project in one directory is to change to that directory and save and
read all files without their pathname:

cd c:\user\data
use bank
save bank

Data supplied with Stata can be read in using the sysuse command.
For instance, the famous auto.dta data can be read using

sysuse auto

Before reading a file into Stata, all data already in memory need
to be cleared, either by running clear before the use command or by
using the option clear as follows:
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use bank, clear

If we wish to save data under an existing filename, this results in an
error message unless we use the option replace as follows:

save bank, replace

For large datasets it is sometimes necessary to increase the amount
of memory Stata allocates to its data areas from the default of 1
megabyte. For example, when no dataset is loaded (e.g., after issu-
ing the command clear), set the memory to 2 megabytes using

set memory 2m

The memory command without arguments gives information on how
much memory is being used and how much is available.

If the data are not available in Stata format, they may be converted
to Stata format using another package (e.g., Stat/Transfer) or saved as
an ASCII file (although the latter option means losing all the labels).
When saving data as ASCII, missing values should be replaced by some
numerical code.

There are three commands available for reading different types of
ASCII data: insheet is for files containing one observation (on all
variables) per line with variables separated by tabs or commas, where
the first line may contain the variable names; infile with varlist (free
format) allows line breaks to occur anywhere and variables to be sep-
arated by spaces as well as commas or tabs; infix is for files with
fixed column format but a single observation can go over several lines;
infile with a dictionary (fixed format) is the most flexible command
since the dictionary can specify exactly what lines and columns contain
what information.

Data can be saved as ASCII using outfile or outsheet. Finally,
odbc can be used to load, write, or view data from Open Data Base
Connectivity (ODBC) sources. See help infiling or [U] 24 Com-
mands to input data for an overview of commands for reading data.

Only one dataset may be loaded at any given time but a dataset
may be combined with the currently loaded dataset using the command
merge or append to add observations or variables; see also Section 1.6.2.

1.4.2 Variables

There are essentially two kinds of variables in Stata: string and nu-
meric. Each variable can be one of a number of storage types that
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require different numbers of bytes. The storage types are byte, int,
long, float, and double for numeric variables and str1 to str80
(str244 in Stata/SE) for string variables of different lengths. Besides
the storage type, variables have associated with them a name, a label,
and a format. The name of a variable y can be changed to x using

rename y x

The variable label can be defined using

label variable x "cost in pounds"

and the format of a numeric variable can be set to ‘general numeric’
with two decimal places using

format x %7.2g

Numeric variables

A missing values in a numeric variable is represented by a period ‘.’
(system missing values), or by a period followed by a letter, such as .a,
.b. etc. Missing values are interpreted as very large positive numbers
with . < .a < .b, etc. Note that this can lead to mistakes in logical
expressions; see also Section 1.5.2. Numerical missing value codes (such
as ‘−99’) may be converted to missing values (and vice versa) using the
command mvdecode. For example,

mvdecode x, mv(-99)

replaces all values of variable x equal to −99 by periods and

mvencode x, mv(-99)

changes the missing values back to −99.
Numeric variables can be used to represent categorical or continuous

variables including dates. For categorical variables it is not always easy
to remember which numerical code represents which category. Value
labels can therefore be defined as follows:

label define s 1 married 2 divorced 3 widowed 4 single
label values marital s

The categories can also be recoded, for example
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recode marital 2/3=2 4=3

merges categories 2 and 3 into category 2 and changes category 4 to 3.
Dates are defined as the number of days since 1/1/1960 and can

be displayed using a date format such as %d. For example, listing the
variable time in %7.0g format gives

list time

time

1. 14976
2. 200

which is not as easy to interpret as

format time %d
list time

time

1. 01jan2001
2. 19jul1960

See help dfmt for other date formats.

String variables

String variables are typically used for categorical variables or identi-
fiers and in some cases for dates (e.g., if the file was saved as an ASCII
file from SPSS). In Stata, it is generally advisable to represent these
variables by numeric variables, and conversion from string to numeric
is straightforward. A categorical string variable (or identifier) can be
converted to a numeric variable using the command encode which re-
places each unique string by an integer and uses that string as the label
for the corresponding integer value. The command decode converts the
labeled numeric variable back to a string variable.

A string variable string1 representing dates can be converted to
numeric using the function date(string1, string2) where string2 is a
permutation of "dmy" to specify the order of the day, month, and year
in string1. For example, the commands
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display date("30/1/1930","dmy")

and

display date("january 30, 1930", "mdy")

both return the negative value −10928 because the date is 10928 days
before 1/1/1960.

1.5 Stata commands

Typing help language gives the following generic command structure
for most Stata commands:

[by varlist:] command [varlist] [= exp] [if exp] [in range]
[weight] [using filename] [, options]

The help file contains links to information on each of the components,
and we will briefly describe them here:

[by varlist:] instructs Stata to repeat the command for each combi-
nation of values in the list of variables varlist.

command is the name of the command and can often be abbreviated;
for example, the command display can be abbreviated as dis.

[varlist] is the list of variables to which the command applies.
[=exp] is an expression.
[if exp] restricts the command to that subset of the observations that

satisfies the logical expression exp.
[in range] restricts the command to those observations whose indices

lie in a particular range range.
[weight] allows weights to be associated with observations (see Sec-

tion 1.7).
[using filename] specifies the filename to be used.
[,options] a comma is only needed if options are used; options are

specific to the command and can often be abbreviated.

For any given command, some of these components may not be
available; for example, list does not allow [using filename]. The
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help files for specific commands specify which components are avail-
able, using the same notation as above, with square brackets enclosing
components that are optional. For example, help log gives

log using filename [, noproc append replace [text|smcl] ]

implying that [by varlist:] is not allowed and that using filename
is required, whereas the three options noproc, append, replace and
[text|smcl] (meaning text or smcl) are optional.

The syntax for varlist, exp, and range is described in the next three
subsections, followed by information on how to loop through sets of
variables or observations.

1.5.1 Varlist

The simplest form of varlist is a list of variable names separated by
spaces. Variable names may also be abbreviated as long as this is
unambiguous, e.g., x1 may be referred to by x only if there is no other
variable name starting with x such as x itself or x2. A set of adjacent
variables such as m1, m2, and x may be referred to as m1-x. All variables
starting with the same set of letters can be represented by that set of
letters followed by a wild card *, so that m* may stand for m1 m6
mother. The set of all variables is referred to by all or *. Examples
of a varlist are

x y
x1-x16
a1-a3 my* sex age

1.5.2 Expressions

There are logical, algebraic, and string expressions in Stata. Logical
expressions evaluate to 1 (true) or 0 (false) and use the operators < and
<= for ‘less than’ and ‘less than or equal to’, respectively. Similarly, >
and >= are used for ‘greater than’ and ‘greater than or equal to’. The
symbols == and ~= stand for ‘equal to’ and ‘not equal to’, and the
characters !, & and | represent ‘not’, ‘and’, and ‘or’, respectively, so
that

if (y!=2 & z>x)|x==1

means ‘if y is not equal to 2 and z is greater than x or if x equals 1’. In
fact, expressions involving variables are evaluated for each observation
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so that the expression really means

(yi �= 2 & zi > xi) | xi == 1

where i is the observation index.
Great care must be taken in using the > or >= operators when there

are missing data. For example, if we wish to delete all subjects older
than 16, the command

drop if age>16

will also delete all subjects for whom age is missing since a missing
value (represented by ‘.’, ‘.a’, ‘.b’, etc.) is interpreted as a very large
number. It is always safer to accommodate missing values explicitly
using for instance

drop if age>16 & age<.

Note that this is safer than specifying age!=. since this would not
exclude missing values coded as ‘.a’, ‘.b’, etc.

Algebraic expressions use the usual operators +, -, *, /, and ^ for
addition, subtraction, multiplication, division, and powering, respec-
tively. Stata also has many mathematical functions such as sqrt(),
exp(), log(), etc. and statistical functions such as chiprob() and
normprob() for cumulative distribution functions and invnorm(), etc.,
for inverse cumulative distribution functions. Pseudo-random numbers
with a uniform distribution on the [0,1) interval may be generated using
uniform(). Examples of algebraic expressions are

y + x
(y + x)^ 3 + a/b
invnorm(uniform())+2

where invnorm(uniform()) returns a (different) draw from the stan-
dard normal distribution for each observation.

Finally, string expressions mainly use special string functions such
as substr(str,n1,n2) to extract a substring from str starting at n1
for a length of n2. The logical operators == and ~= are also allowed
with string variables and the operator + concatenates two strings. For
example, the combined logical and string expression

"moon"+substr("sunlight",4,5))=="moonlight"
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returns the value 1 for ‘true’.
For a list and explanation of all functions, use help functions.

1.5.3 Observation indices and ranges

Each observation has an index associated with it. For example, the
value of the third observation on a particular variable x may be referred
to as x[3]. The macro n takes on the value of the running index and
N is equal to the number of observations. We can therefore refer to the
previous observation of a variable as x[ n-1].

An indexed variable is only allowed on the right-hand side of an
assignment. If we wish to replace x[3] by 2, we can do this using the
syntax

replace x = 2 if _n==3

We can refer to a range of observations either using if with a logi-
cal expression involving n or, more easily, by using in range. The
command above can then be replaced by

replace x = 2 in 3

More generally, range can be a range of indices specified using the
syntax f/l (for ‘first to last’) where f and/or l may be replaced by
numerical values if required, so that 5/12 means ‘fifth to twelfth’ and
f/10 means ‘first to tenth’, etc. Negative numbers are used to count
from the end, for example

list x in -10/l

lists the last 10 observations.

1.5.4 Looping through variables or observations

Explicitly looping through observations is often not necessary because
expressions involving variables are automatically evaluated for each
observation. It may however be required to repeat a command for
subsets of observations and this is what by varlist: is for. Before
using by varlist:, however, the data must be sorted using

sort varlist
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where varlist includes the variables to be used for by varlist:. Note
that if varlist contains more than one variable, ties in the earlier vari-
ables are sorted according to the next variable(s). For example,

sort school class
by school class: summarize test

give the summary statistics of test for each class. If class is labeled
from 1 to ni for the ith school, then not using school in the above
commands would result in the observations for all classes with the
same label being grouped together. To avoid having to sort the data,
bysort can be substituted for by so that the following single command
replaces the two commands above:

bysort school class: summarize test

A very useful feature of by varlist: is that it causes the observation
index n to count from 1 within each of the groups defined by the
distinct combinations of the values of varlist. The macro N represents
the number of observations in each group. For example,

sort group age
by group: list age if _n==_N

lists age for the last observation in each group where the last obser-
vation in this case is the observation with the highest age within its
group. The same can be achieved in a single bysort command:

bysort group (age): list age if _n==_N

where the variable in parentheses is used to sort the data but does not
contribute to the definition of the subgroups of observations to which
the list command applies.

We can also loop through a list of variables or other objects using
foreach. The simplest syntax is

foreach variable in v1 v2 v3 {
list `variable´

}

This syntax uses a local macro (see also Section 1.9) variable which
takes on the (string) values v1, then v2, and finally v3 inside the braces.
(Local macros can also be defined explicity using local variable v1).
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Enclosing the local macro name in ` ´ is equivalent to typing its con-
tents, i.e., `variable´ evaluates to v1, then v2, and finally v3 so that
each of these variables is listed in turn.

In the first line above we listed each variable explicitly. We can
instead use the more general varlist syntax by specifying that the list
is of type varlist as follows:

foreach variable of varlist v* {
list `variable´

}

Numeric lists can also be specified. The command

foreach number of numlist 1 2 3 {
disp `number´

}

produces the output

1
2
3

Numeric lists may be abbreviated by ‘first/last’, here 1/3 or
‘first(increment)last’, for instance 1(2)7 for the list 1 3 5 7. See help
foreach for other list types.

For numeric lists, a simpler syntax is forvalues. To produce the
output above, use

forvalues i=1/3 {
disp `i´

}

The same output can also be produced using while as follows:

local i = 1
while i<=3 {

disp `i´
local i = `i´ + 1

}

Here the local macro i was defined using local i = 1 and then in-
cremented by 1 using local i = `i´ + 1. See also Section 1.10 on
programming. Cox (2002b) gives a useful tutorial on byvarlist: and
Cox (2002a; 2003) discusses foreach and forvalues in detail.
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1.6 Data management

1.6.1 Generating and changing variables

New variables may be generated using the commands generate or
egen. The command generate simply equates a new variable to an
expression which is evaluated for each observation. For example,

generate x = 1

creates a new variable called x and sets it equal to one. When generate
is used together with if exp or in range, the remaining observations
are set to missing. For example,

generate percent = 100*(old - new)/old if old>0

generates the variable percent and sets it equal to the percentage
decrease from old to new where old is positive and equal to missing
otherwise. The command replace works in the same way as generate
except that it allows an existing variable to be changed. For example,

replace percent = 0 if old<=0

changes the missing values in the variable percent to zeros. The two
commands above could be replaced by the single command

generate percent = cond(old>0, 100*(old-new)/old, 0)

where cond() evaluates to the second argument if the first argument
is true and to the third argument otherwise.

The command egen provides extensions to generate. One advan-
tage of egen is that some of its functions accept a variable list as an
argument, whereas the functions for generate can only take simple
expressions as arguments. For example, we can form the average of
100 variables m1 to m100 using

egen average = rmean(m1-m100)

where missing values are ignored. Other functions for egen operate on
groups of observations. For example, if we have the income (variable
income) for members within families (variable family), we may want
to compute the total income of each member’s family using

egen faminc = sum(income), by(family)
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An existing variable can be replaced using egen functions only by first
deleting it using

drop x

Another way of dropping variables is using keep varlist where varlist
is the list of all variables not to be dropped.

A very useful command for changing categorical numeric variables
is recode. For instance, to merge the first three categories and recode
the fourth to ‘2’, type

recode categ 1/3 = 1 4 = 2

If there are any other values, such as missing values, these will remain
unchanged. See help recode for more information.

1.6.2 Changing the shape of the data

It is frequently necessary to change the shape of data, the most common
application being grouped data, in particular repeated measures such
as panel data. If we have measurement occasions j for subjects i, this
may be viewed as a multivariate dataset in which each occasion j is
represented by a variable xj, and the subject identifier is in the variable
subj. However, for some statistical analyses we may need one single,
long, response vector containing the responses for all occasions for all
subjects, as well as two variables subj and occ to represent the indices
i and j, respectively. The two ‘data shapes’ are called wide and long,
respectively. We can convert from the wide shape with variables xj
and subj given by

list

x1 x2 subj
1. 2 3 1
2. 4 5 2

to the long shape with variables x, occ, and subj using the syntax

reshape long x, i(subj) j(occ)

(note: j = 1 2)

Data wide -> long
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Number of obs. 2 -> 4
Number of variables 3 -> 3
j variable (2 values) -> occ
xij variables:

x1 x2 -> x

The data now look like this:

list

subj occ x

1. 1 1 2
2. 1 2 3
3. 2 1 4
4. 2 2 5

We can change the data back again using

reshape wide x, i(subj) j(occ)

For data in the long shape, it may be required to collapse the data
so that each group is represented by a single summary measure. For ex-
ample, for the data above, each subject’s responses can be summarized
using the mean, meanx, and standard deviation, sdx, and the number
of nonmissing responses, num. This can be achieved using

collapse (mean) meanx=x (sd) sdx=x (count) num=x, by(subj)
list

subj meanx sdx num

1. 1 2.5 .707107 2
2. 2 4.5 .707107 2

Since it is not possible to convert back to the original format in this
case, the data may be preserved before running collapse and restored
again later using the commands preserve and restore.

Other ways of changing the shape of data include dropping obser-
vations using

drop in 1/10
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to drop the first 10 observations or

bysort group (weight): keep if _n==1

to drop all but the lightest member of each group. Sometimes it may
be necessary to transpose the data, converting variables to observations
and vice versa. This may be done and undone using xpose.

If each observation represents a number of units (as after collapse),
it may sometimes be required to replicate each observation by the num-
ber of units, num, that it represents. This may be done using

expand num

If there are two datasets, subj.dta, containing subject specific vari-
ables, and occ.dta, containing occasion-specific variables for the same
subjects, then if both files contain the same sorted subject identifier
subj id and subj.dta is currently loaded, the files may be merged as
follows:

merge subj_id using occ

resulting in the variables from subj.dta being expanded as in the
expand command above and the variables from occ.dta being added.

1.7 Estimation

All estimation commands in Stata, for example regress, logistic,
poisson, and glm, follow the same syntax and share many of the same
options.

The estimation commands also produce essentially the same output
and save the same kind of information. The stored information may
be processed using the same set of post-estimation commands.

The basic command structure is

[xi:] command depvar [model] [weights], options

which may be combined with by varlist:, if exp, and in range as
usual. The response variable is specified by depvar and the explana-
tory variables by model. The latter is usually just a list of explanatory
variables. If categorical explanatory variables and interactions are re-
quired, using xi: at the beginning of the command enables special
notation for model to be used. For example,
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xi: regress resp i.x

creates dummy variables for each value of x except the lowest value
and includes these dummy variables as predictors in the model.

xi: regress resp i.x*y z

fits a regression model with the main effects of x, y, and z and their
interaction x×y where x is treated as categorical and y and z as con-
tinuous (see help xi for further details).

The syntax for the [weights] option is

weighttype = varname

where weighttype depends on the reason for weighting the data. If
the data are in the form of a table where each observation represents a
group containing a total of freq observations, using [fweight=freq] is
equivalent to running the same estimation command on the expanded
dataset where each observation has been replicated freq times. If
the observations have different standard deviations, for example, be-
cause they represent averages of different numbers of observations, then
aweights is used with weights proportional to the reciprocals of the
standard deviations. Finally, pweights is used for probability weight-
ing where the weights are equal to the inverse probability that each
observation was sampled. (Another type of weights, iweights, is avail-
able for some estimation commands, mainly for use by programmers.)

All the results of an estimation command are stored and can be pro-
cessed using post-estimation commands. For example, predict may be
used to compute predicted values or different types of residuals for the
observations in the present dataset and the commands test, testparm,
lrtest and lincom for inferences based on previously estimated mod-
els.

The saved results can also be accessed directly using the appropriate
names. For example, the regression coefficients are stored in global
macros called b[varname]. To display the regression coefficient of x,
simply type

display _b[x]

To access the entire parameter vector, use e(b). Many other results
may be accessed using the e(name) syntax. See the ‘Saved Results’
section of the entry for the estimation command in the Stata Reference
Manuals to find out under what names particular results are stored.
The command
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ereturn list

lists the names and contents of all results accessible via e(name).
Note that ‘r-class’ results produced by commands that are not esti-

mation commands can be accessed using r(name). For example, after
summarize, the mean can be accessed using r(mean). The command

return list

list the names and contents of all ‘r-class’ results currently available.

1.8 Graphics

One of the great new features introduced in Stata 8 is the improved
graphics. The graphical user interface (GUI) makes it extremely easy
to produce a very attractive graph with different line-styles, legends,
etc. To demonstrate this, we first simulate some data as follows:

clear
set obs 100
set seed 13211
gen x=invnorm(uniform())
gen y = 2 + 3*x + invnorm(uniform())

To produce a scatterplot of y versus x via the GUI, select Twoway
graph (scatterplot, line etc.) from the Graphics menu to bring up
the dialog box shown in Figure 1.4. Specify x and y in the boxes labeled
x and y. This can be done either by typing or by first clicking into
the box and then selecting the appropriate variable from the Variables
window. To add a label to the x-axis, click into the tab labeled X-Axis
and type ‘Simulated x’ in the Title box. Similarly, type ‘Simulated y’
in the Title box in the Y-Axis tab. Finally, click OK to produce the
graph shown in Figure 1.5. To change for instance the symbol we would
have to plot the graph again, this time selecting a different option in
the box labeled Symbol under the heading Marker in the dialog box
(it is not possible to edit a graph). The following command appears in
the output:

twoway (scatter y x), ytitle(Simulated y) xtitle(Simulated x)

The command twoway, short for graph twoway, can be used to plot
scatterplots, lines or curves and many other plots requiring an x and
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Figure 1.4: Dialog box for twoway graph.
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Figure 1.5: Scatterplot of simulated data.
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y-axis. Here the plottype is scatter which requires a y and x variable
to be specified. Details such as axis labels are given after the comma.
Help on scatterplots can be found (either in the manual or using help)
under ‘graph twoway scatter’. Help on options for graph twoway can
be found under ‘twoway options’.

We can use a single graph twoway to produce a scatterplot with a
regression line superimposed:

twoway (scatter y x) (lfit y x), /*
*/ ytitle(Simulated y) xtitle(Simulated x) /*
*/ legend(order(1 "Observed" 2 "Fitted"))

giving the graph in Figure 1.6. Inside each pair of parentheses is a
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Figure 1.6: Scatterplot and fitted regression line.

command specifying a plot to be added to the same graph. The options
applying to the graph as a whole appear after these individual plots
preceded by a comma as usual. Here the legend() option was used to
specify labels for the legend; see the manual or help for ‘legend option’.

Each plot can have its own if exp or in range restrictions as well
as various options. For instance, we first create a new variable group,
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taking on the values 1 and 2 and add 2 to the y-values of group 2:

gen group = cond(_n < 50,1,2)
replace y = y+2 if group==2

Now produce a scatterplot with different symbols for the two groups
and separate regression lines using

twoway (scatter y x if group==1, msymbol(O)) /*
*/ (lfit y x if group==1, clpat(solid)) /*
*/ (scatter y x if group==2, msymbol(Oh)) /*
*/ (lfit y x if group==2, clpat(dash)), /*
*/ ytitle(Simulated y) xtitle(Simulated x) /*
*/ legend(order(1 2 "Group 1" 3 4 "Group 2"))

giving the graph shown in Figure 1.7. The msymbol(O) and msymbol(Oh)
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Figure 1.7: Scatterplot and fitted regression line.

options produce solid and hollow circles, respectively, whereas clpat(solid)
and clpat(dash) produce solid and dashed lines, respectively. These
options are inside the parentheses for the corresponding plots. The
options referring to the graph as a whole, xtitle(), ytitle(), and
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legend(), appear after the individual plots have been specified. Just
before the final comma, we could also specify if exp or in range re-
strictions for the graph as a whole.

Some people find it more convenient to separate plots using || instead
of enclosing them in parentheses, for instance replacing the first two
lines above by

twoway scatter y x if group==1, ms(O) || /*
*/ lfit y x if group==1, clpat(solid)

The by() option can be used to produce separate plots (each with their
own sets of axes) in the same graph. For instance

label define gr 1 "Group 1" 2 "Group 2"
label values group gr
twoway scatter y x, by(group)

produces the graph in Figure 1.8. Here the value labels of group are
used to label the individual panels.
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Figure 1.8: Separate scatterplot produced using by().
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Other useful graphics commands include graph twoway function
for plotting a function without having to define any new variables,
graph matrix for scatterplot matrices, graph box for boxplots, graph
bar for bar charts, histogram for histograms, kdensity for kernel den-
sity plots and qnorm for Q-Q plots.

For graph box and graph bar, we may wish to plot different vari-
ables, referred to as yvars in Stata, for different subgroups or categories,
of individuals, specified using the over() option. For example,

replace x = x + 1
graph bar y x, over(group)

results in the bar chart in Figure 1.9. See yvar options and group
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mean of y mean of x

Figure 1.9: Bar chart.

options in [G] graph bar for ways to change the labeling and presen-
tation of the bars.

The general appearance of graphs is defined in schemes. In this
book we use scheme sj (Stata Journal) by issuing the command

set scheme sj
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at the beginning of each Stata session. See [G] schemes or help
schemes for a complete list and description of schemes available.

We find the GUI interface particularly useful for learning about
these and other graphics commands and their options.

1.9 Stata as a calculator

Stata can be used as a simple calculator using the command display
followed by an expression, e.g.,

display sqrt(5*(11-3^2))

3.1622777

There are also a number of statistical commands that can be used
without reference to any variables. These commands end in i, where
i stands for immediate command. For example, we can calculate the
sample size required for an independent samples t-test to achieve 80%
power to detect a difference at the 1% level (2-sided) if the population
means are 1 and 2 and the within population standard deviation is 1
using sampsi as follows:

sampsi 1 2, sd(1) power(.8) alpha(0.01)

(see Display 1.1). Similarly, ttesti can be used to carry out a t-test

Estimated sample size for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
and m2 is the mean in population 2

Assumptions:

alpha = 0.0100 (two-sided)
power = 0.8000

m1 = 1
m2 = 2

sd1 = 1
sd2 = 1

n2/n1 = 1.00

Estimated required sample sizes:

n1 = 24
n2 = 24

Display 1.1
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if the means, standard deviations, and sample sizes are given.
As briefly shown in Section 1.5.4, results can be saved in local macros

using the syntax

local a = exp

The result may then be used again by enclosing the local macro name
in single quotes `´ (using two different keys on the keyboard). For
example,

local a = 5
display sqrt(`a´)

2.236068

Matrices can also be defined and matrix algebra carried out inter-
actively. The following matrix commands define a matrix a, display
it, and give its trace and its eigenvalues:

matrix a = (1,2\ 2,4)
matrix list a

symmetric a[2,2]
c1 c2

r1 1
r2 2 4

dis trace(a)

5

matrix symeigen x v = a
matrix list v

v[1,2]
e1 e2

r1 5 0
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1.10 Brief introduction to programming

So far we have described commands as if they would be run interac-
tively. However, in practice, it is always useful to be able to repeat
the entire analysis using a single command. This is important, for ex-
ample, when a data entry error is detected after most of the analysis
has already been carried out. In Stata, a set of commands stored as
a do-file, called for example, analysis.do, can be executed using the
command

do analysis

We strongly recommend that readers create do-files for any work in
Stata, e.g., for the exercises of this book.

One way of generating a do-file is to carry out the analysis inter-
actively and save the commands, for example, by clicking into in
the Review window and selecting Save Review Contents. Stata’s
Do-file Editor can also be used to create or edit a do-file. One way of
trying out commands interactively and building up a do-file is to run
commands in the Commands window and copy them into the Do-file
Editor after checking that they work. Another possibility is to type
commands into the Do-file Editor and try them out individually by
highlighting the commands and clicking into or selecting Tools →
Do Selection. Alternatively, any text editor may be used to create a
do-file. The following is a useful template for a do-file:

/* comment describing what the file does */
version 8.0
capture log close
log using filename, replace
set more off

command 1
command 2
etc.

log close
exit

We will explain each line in turn.

1. The ‘brackets’ /* and */ cause Stata to ignore everything between
them. Another way of commenting out lines of text is to start the
lines with a simple *.
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2. The command version 8.0 causes Stata to interpret all commands
as if we were running Stata version 8.0 even if, in the future, we have
actually installed a later version in which some of these commands
do not work any more.

3. The capture prefix causes the do-file to continue running even if the
command results in an error. The capture log close command
therefore closes the current log file if one is open or returns an error
message. (Another useful prefix is quietly which suppresses all
output, except error messages.)

4. The command log using filename, replace opens a log file, re-
placing any file of the same name if it already exists.

5. The command set more off causes all the output to scroll past
automatically instead of waiting for the user to scroll through it
manually. This is useful if the user intends to look at the log file
for the output.

6. After the analysis is complete, the log file is closed using log close.
7. The last statement, exit, is not necessary at the end of a do-file

but may be used to make Stata stop running the do-file wherever
it is placed.

Variables, global macros, local macros, and matrices can be used
for storing and referring to data and these are used extensively in pro-
grams. For example, we may wish to subtract the mean of x from x.
Interactively, we would use

summarize x

to find out what the mean is and then subtract that value from x.
However, we should not type the value of the mean into a do-file because
the result would no longer be valid if the data change. Instead, we can
access the mean computed by summarize using r(mean):

quietly summarize x, meanonly
gen xnew = x-r(mean)

(If all that is required from summarize is the mean or the sum, it is
more efficient to use the meanonly option.) Most Stata commands are
r class, meaning that they store results that may be accessed using r()
with the appropriate name inside the brackets. Estimation commands
store the results in e(). To find out under what names constants are
stored, see the ‘Stored Results’ section for the command of interest in
the Stata Reference Manuals.

If a local macro is defined without using the = sign, anything can
appear on the right-hand side and typing the local macro name in single
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quotes has the same effect as typing whatever appeared on the right-
hand side in the definition of the macro. For example, if we have a
variable y, we can use the commands

local a y
disp "`a´[1] = " `a´[1]

y[1] = 4.6169958

Local macros are only ‘visible’ within the do-file or program in which
they are defined. Global macros may be defined using

global a = 1

and accessed by prefixing them with a dollar sign, for example,

gen b = $a

Sometimes it is useful to have a general set of commands (or a
program) that may be applied in different situations. It is then essential
that variable names and parameters specific to the application can be
passed to the program. If the commands are stored in a do-file, the
‘arguments’ with which the do-file will be used are referred to as `1´,
`2´ etc. inside the do-file. For example, a do-file filename.do containing
the command

list `1´ `2´

may be run using

do filename x1 x2

to cause x1 and x2 to be listed. Alternatively, we can define a program
which can be called without using the do command in much the same
way as Stata’s own commands. This is done by enclosing the set of
commands by

program progname
end

After running the program definition, we can run the program by typing
the program name and arguments.

Most programs require things to be done repeatedly by looping
through some list of objects. This can be achieved using foreach and
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forvalues. For example, we define a program called mylist that lists
the first three observations of each variable in a variable list:

program mylist
version 8.1
syntax varlist
foreach var in `varlist´ { /* outer loop: variables */

display "`var´"
forvalues i=1/3 { /* inner loop: observations */

display `var´[`i´]
}
display " "

}
end

We can run the program using the command

mylist x y z

Here the syntax command defines the syntax to be

mylist varlist

(no options allowed), issues an error message if varlist is not valid,
for example if one of the variables does not exist, and places the vari-
able names into the local macro ‘varlist’ (see help syntax and [P]
syntax). The outer foreach loop repeats everything within the outer
braces for each variable in ‘varlist’. Within this loop, the ‘current’
variable is placed in the local macro var. For each variable, the inner
forvalues loop repeats the display command for i equal to 1, 2, and
3.

A program may be defined by typing it into the Commands win-
dow. This is almost never done in practice. However, a more useful
method is to define the program within a do-file where it can easily
be edited. Note that once the program has been loaded into memory
(by running the program command), it has to be cleared from memory
using program drop before it can be redefined. It is therefore useful
to have the command

capture program drop mylist

in the do-file before the program command, where capture ensures
that the do-file continues running even if mylist does not yet exist.

A program may also be saved in a separate file (containing only the
program definition) of the same name as the program itself and having
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the extension .ado. If the ado-file (automatic do-file) is in a directory
in which Stata looks for ado-files, for example the current directory,
it can be executed simply by typing the name of the file. There is no
need to load the program first (by running the program definition). To
find out where Stata looks for ado-files, type

adopath

This lists various directories including \ado\personal/, the directory
where personal ado-files may be stored. Many of Stata’s own commands
are actually ado-files stored in the ado subdirectory of the directory
where the Stata executable (e.g., wstata.exe) is located.

The [P] Programming Reference Manual gives detailed information
on the programming commands mentioned here and many more. See
also [P] dialogs for information on programming your own dialogs.
Not discussed in the manuals for Stata release 8.0 is the Stata Plugin
Interface (SPI) which allows compiled C-programs to be called from
a Stata program. Information on how this is done can be found at
http://www.stata.com/support/plugins/.

Chapter 13 of this book gives some examples of maximizing your
own likelihood, and this is discussed in detail in Gould et al. (2003).

1.11 Keeping Stata up to date

Stata Corporation continually updates the current version of Stata. If
the computer is connected to the Internet, Stata can be updated by
issuing the command

update all

Ado-files are then downloaded and stored in the correct directory. If the
executable has changed since the last update, a new executable (e.g.,
wstata.bin) is also downloaded. This file should be used to overwrite
the old executable (e.g., wstata.exe) after saving the latter under a
new name (e.g., wstata.old). A quick and easy way of achieving this is
to issue the command update swap within Stata. The command help
whatsnew lists all the changes since the release of the present version
of Stata.

In addition to Stata’s official updates to the package, users are con-
tinuously creating and updating their own commands and making them
available to the Stata community. Articles on user-written programs
are published in a peer-reviewed journal called The Stata Journal (SJ)
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which replaced the Stata Technical Bulletin (STB) at the end of 2001.
These and other user-written programs can be downloaded by clicking
into Help → SJ & User-written Programs, and selecting one of a
number of sites including sites for the SJ and STB. A large repository
for user-written Stata programs is the Statistical Software Components
(SSC) archive at http://ideas.repec.org/s/boc/bocode.htmlmain-
tained by Kit Baum (the archive is part of IDEAS which uses the
RePEc database). These programs can be downloaded using the ssc
command. To find out about commands for a particular problem (user-
written or part of Stata), use the findit command. For example,
running

findit meta

brings up the Stata Viewer with a long list of entries including one
on STB-42:

STB-42 sbe16.1 . . . . . New syntax and output for the meta-analysis command
(help meta if installed) . . . . . . . . . . . S. Sharp and J. Sterne
3/98 pp.6--8; STB Reprints Vol 7, pp.106--108

which reveals that STB-42 has a directory in it called sbe16.1 contain-
ing files for ‘New syntax and output for the meta-analysis command’
and that help on the new command may be found using help meta,
but only after the program has been installed. The authors are S. Sharp
and J. Sterne. The command can be installed by clicking into the cor-
responding hyperlink in the Stata Viewer (or going through Help →
SJ & User-written Programs, selecting http://www.stata.com
(STB and more), clicking on stb, then stb42, sbe16 1) and selecting
(click here to install). The program can also be installed using the
commands

net stb 42 sbe16_1

(see help net). Note that findit first lists programs that have been
published in the SJ and STB, followed by programs from other sites
such as SSC. This order often does not reflect the chronological order of
versions of a given program since SSC usually has the most up-to-date
version. For example,

findit multilevel

lists versions of a user-written program gllamm that were published in
2002 in the SJ and in 2000 in the STB, followed by the current version
on SSC. The latter can be obtained by clicking on the corresponding
hyperlink in the Stata Viewer or using the command
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ssc install gllamm

See help ssc.

1.12 Exercises

1. Use a text editor (e.g., Notepad, PFE, or the Stata Do-file Editor)
to generate the dataset test.dat given below, where the columns
are separated by tabs (make sure to save it as a text only or ASCII
file).

v1 v2 v3
1 3 5
2 16 3
5 12 2

2. Read the data into Stata using insheet (see help insheet).
3. Click into the Data Editor and type in the variable sex with values

1, 2, and 1.
4. Define value labels for sex (1=male, 2=female).
5. Use gen to generate id, a subject index (from 1 to 3).
6. Use rename to rename the variables v1 to v3 to time1 to time3.

Also try doing this in a single command using forvalues.
7. Use reshape to convert the dataset to long shape.
8. Generate a variable d that is equal to the squared difference between

the variable time at each occasion and the average of time for each
subject.

9. Drop the observation corresponding to the third occasion for id=2.
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Chapter 2

Data Description and

Simple Inference: Female

Psychiatric Patients

2.1 Description of data

The data to be used in this chapter consist of observations on 8 variables
for 118 female psychiatric patients and are available in Hand et al. (1994).
The variables are as follows:

� age: age in years
� IQ: intelligence score
� anxiety: anxiety (1=none, 2=mild, 3=moderate, 4=severe)
� depress: depression (1=none, 2=mild, 3=moderate, 4=severe)
� sleep: can you sleep normally? (1=yes, 2=no)
� sex: have you lost interest in sex? (1=no, 2=yes)
� life: have you thought recently about ending your life? (1=no,

2=yes)
� weight: increase in weight over last six months (in lbs)

The data are given in Table 2.1; missing values are coded as −99. There
are a variety of questions that might be addressed by these data; for
example, how are the variables related? Do women who have recently
contemplated suicide differ in any respects from those who have not?
Also of interest are the correlations between anxiety and depression
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and between weight change, age, and IQ. It should be noted, however,
that any associations found from cross-sectional observational data like
these are at best suggestive of causal relationships.

Table 2.1 Data in fem.dat
id age IQ anx depress sleep sex life weight

1 39 94 2 2 2 2 2 4.9
2 41 89 2 2 2 2 2 2.2
3 42 83 3 3 3 2 2 4.0
4 30 99 2 2 2 2 2 -2.6
5 35 94 2 1 1 2 1 -0.3
6 44 90 −99 1 2 1 1 0.9
7 31 94 2 2 −99 2 2 -1.5
8 39 87 3 2 2 2 1 3.5
9 35 −99 3 2 2 2 2 -1.2

10 33 92 2 2 2 2 2 0.8
11 38 92 2 1 1 1 1 -1.9
12 31 94 2 2 2 −99 1 5.5
13 40 91 3 2 2 2 1 2.7
14 44 86 2 2 2 2 2 4.4
15 43 90 3 2 2 2 2 3.2
16 32 −99 1 1 1 2 1 -1.5
17 32 91 1 2 2 −99 1 -1.9
18 43 82 4 3 2 2 2 8.3
19 46 86 3 2 2 2 2 3.6
20 30 88 2 2 2 2 1 1.4
21 34 97 3 3 −99 2 2 −99.0
22 37 96 3 2 2 2 1 −99.0
23 35 95 2 1 2 2 1 -1.0
24 45 87 2 2 2 2 2 6.5
25 35 103 2 2 2 2 1 -2.1
26 31 −99 2 2 2 2 1 -0.4
27 32 91 2 2 2 2 1 -1.9
28 44 87 2 2 2 2 2 3.7
29 40 91 3 3 2 2 2 4.5
30 42 89 3 3 2 2 2 4.2
31 36 92 3 −99 2 2 2 −99.0
32 42 84 3 3 2 2 2 1.7
33 46 94 2 −99 2 2 2 4.8
34 41 92 2 1 2 2 1 1.7
35 30 96 −99 2 2 2 2 -3.0
36 39 96 2 2 2 1 1 0.8
37 40 86 2 3 2 2 2 1.5
38 42 92 3 2 2 2 1 1.3
39 35 102 2 2 2 2 2 3.0
40 31 82 2 2 2 2 1 1.0
41 33 92 3 3 2 2 2 1.5
42 43 90 −99 −99 2 2 2 3.4
43 37 92 2 1 1 1 1 −99.0
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Table 2.1 Data in fem.dat (continued)
44 32 88 4 2 2 2 1 −99.0
45 34 98 2 2 2 2 −99 0.6
46 34 93 3 2 2 2 2 0.6
47 42 90 2 1 1 2 1 3.3
48 41 91 2 1 1 1 1 4.8
49 31 −99 3 1 2 2 1 -2.2
50 32 92 3 2 2 2 2 1.0
51 29 92 2 2 2 1 2 -1.2
52 41 91 2 2 2 2 2 4.0
53 39 91 2 2 2 2 2 5.9
54 41 86 2 1 1 2 1 0.2
55 34 95 2 1 1 2 1 3.5
56 39 91 1 1 2 1 1 2.9
57 35 96 3 2 2 1 1 -0.6
58 31 100 2 2 2 2 2 -0.6
59 32 99 4 3 2 2 2 -2.5
60 41 89 2 1 2 1 1 3.2
61 41 89 3 2 2 2 2 2.1
62 44 98 3 2 2 2 2 3.8
63 35 98 2 2 2 2 1 -2.4
64 41 103 2 2 2 2 2 -0.8
65 41 91 3 1 2 2 1 5.8
66 42 91 4 3 −99 −99 2 2.5
67 33 94 2 2 2 2 1 -1.8
68 41 91 2 1 2 2 1 4.3
69 43 85 2 2 2 1 1 −99.0
70 37 92 1 1 2 2 1 1.0
71 36 96 3 3 2 2 2 3.5
72 44 90 2 −99 2 2 2 3.3
73 42 87 2 2 2 1 2 -0.7
74 31 95 2 3 2 2 2 -1.6
75 29 95 3 3 2 2 2 -0.2
76 32 87 1 1 2 2 1 -3.7
77 35 95 2 2 2 2 2 3.8
78 42 88 1 1 1 2 1 -1.0
79 32 94 2 2 2 2 1 4.7
80 39 −99 3 2 2 2 2 -4.9
81 34 −99 3 −99 2 2 1 −99.0
82 34 87 3 3 2 2 1 2.2
83 42 92 1 1 2 1 1 5.0
84 43 86 2 3 2 2 2 0.4
85 31 93 −99 2 2 2 2 -4.2
86 31 92 2 2 2 2 1 -1.1
87 36 106 2 2 2 1 2 -1.0
88 37 93 2 2 2 2 2 4.2
89 43 95 2 2 2 2 1 2.4
90 32 95 3 2 2 2 2 4.9
91 32 92 −99 −99 −99 2 2 3.0
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Table 2.1 Data in fem.dat (continued)
92 32 98 2 2 2 2 2 -0.3
93 43 92 2 2 2 2 2 1.2
94 41 88 2 2 2 2 1 2.6
95 43 85 1 1 2 2 1 1.9
96 39 92 2 2 2 2 1 3.5
97 41 84 2 2 2 2 2 -0.6
98 41 92 2 1 2 2 1 1.4
99 32 91 2 2 2 2 2 5.7

100 44 86 3 2 2 2 2 4.6
101 42 92 3 2 2 2 1 −99.0
102 39 89 2 2 2 2 1 2.0
103 45 −99 2 2 2 2 2 0.6
104 39 96 3 −99 2 2 2 −99.0
105 31 97 2 −99 −99 −99 2 2.8
106 34 92 3 2 2 2 2 -2.1
107 41 92 2 2 2 2 2 -2.5
108 33 98 3 2 2 2 2 2.5
109 34 91 2 1 1 2 1 5.7
110 42 91 3 3 2 2 2 2.4
111 40 89 3 1 1 1 1 1.5
112 35 94 3 3 2 2 2 1.7
113 41 90 3 2 2 2 2 2.5
114 32 96 2 1 1 2 1 −99.0
115 39 87 2 2 2 1 2 −99.0
116 41 86 3 2 1 1 2 -1.0
117 33 89 1 1 1 1 1 6.5
118 42 −99 3 2 2 2 2 4.9

2.2 Group comparison and correlations

The data in Table 2.1 contain a number of interval scale or continuous
variables (weight change, age, and IQ), ordinal variables (anxiety and
depression), and dichotomous variables (sex and sleep) that we wish to
compare between two groups of women: those who have thought about
ending their lives and those who have not.

For interval scale variables, the most common statistical test is the
t-test which assumes that the observations in the two groups are inde-
pendent and are sampled from two populations each having a normal
distribution and equal variances. A nonparametric alternative (which
does not rely on the latter two assumptions) is the Mann-Whitney U -
test.

For ordinal variables, either the Mann-Whitney U -test or a chi-
squared test may be appropriate depending on the number of levels
of the ordinal variable. The latter test can also be used to compare
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dichotomous variables between the groups.
Continuous variables can be correlated using the Pearson correla-

tion. If we are interested in the question whether the correlations differ
significantly from zero, then a hypothesis test is available that assumes
bivariate normality. A significance test not making this distributional
assumption is also available; it is based on the correlation of the ranked
variables, the Spearman rank correlation. Finally, if variables have only
few categories, Kendall’s tau-b provides a useful measure of correla-
tion (see, e.g., Sprent and Smeeton, 2001). More details of these tests
and correlation coefficients can be found in Altman (1991) and Agresti
(2002).

2.3 Analysis using Stata

Assuming the data have been saved from a spreadsheet or statisti-
cal package (for example SAS or SPSS) as a tab-delimited ASCII file,
fem.dat, they can be read using the instruction

insheet using fem.dat, clear

There are missing values which have been coded as −99. We replace
these with Stata’s missing value code ‘.’ using

mvdecode _all, mv(-99)

The variable sleep has been entered incorrectly as ‘3’ for subject
3. Such data entry errors can be detected using the command

codebook

which displays information on all variables; the output for sleep is
shown below:

sleep SLEEP

type: numeric (byte)

range: [1,3] units: 1
unique values: 3 missing .: 5/118

tabulation: Freq. Value
14 1
98 2
1 3
5 .

Alternatively, we can detect errors using the assert command. For
sleep, we would type
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assert sleep==1|sleep==2|sleep==.

1 contradiction in 118 observations
assertion is false

Since we do not know what the correct code for sleep should have
been, we can replace the incorrect value of 3 by ‘missing’

replace sleep=. if sleep==3

In order to have consistent coding for ‘yes’ and ‘no’, we recode the
variable sleep

recode sleep 1=2 2=1

and to avoid confusion in the future, we label the values as follows:

label define yn 1 no 2 yes
label values sex yn
label values life yn
label values sleep yn

The last three commands could also have been carried out in a foreach
loop:

foreach x in sex life sleep {
label values `x´ yn

}

First, we could compare the suicidal women with the non-suicidal
by simply tabulating suitable summary statistics in each group. For
example, for IQ the required instruction is

table life, contents(mean iq sd iq)

LIFE mean(iq) sd(iq)

no 91.2708 3.757204
yes 92.0984 5.0223

A more formal approach to comparing the two groups on say weight
gain over the last six months might involve an independent samples t-
test. First, however, we need to check whether the assumptions needed
for the t-test appear to be satisfied for weight gain. One way this can
be done is by plotting the variable weight as a boxplot for each group
after defining appropriate labels:

label variable weight "weight change in last six months"
graph box weight, by(life) box(1, bfcolor(none)) /*
*/ box(2, bfcolor(none)) yline(0) medtype(line)
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Figure 2.1: Boxplot of weight by group.

giving the graph shown in Figure 2.1. The yline(0) option has placed
a horizontal line at 0. (Note that in the instructions above, the ‘brack-
ets’ for comments, /* and */ were used to make Stata ignore the line
breaks in the middle of the graph box command in a do-file, but these
‘brackets’ should not be used in the Stata Command window.) The
groups do not seem to differ much in their median weight change and
the assumptions for the t-test seem reasonable because the distributions
are symmetric with similar spread (box-heights represent inter-quartile
ranges).

We can also check the assumption of normality more formally by
plotting a normal quantile plot of suitably defined residuals. Here the
difference between the observed weight changes and the group-specific
mean weight changes can be used. If the normality assumption is sat-
isfied, the quantiles of the residuals should be linearly related to the
quantiles of the normal distribution. The residuals can be computed
and plotted using

egen res=mean(weight), by(life)
replace res=weight-res
label variable res "residuals of t-test for weight"
qnorm res, title("Normal Q-Q plot")
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The points in the Q-Q plot in Figure 2.2 appear to be sufficiently close
to the straight line to justify the normality assumption.
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Figure 2.2: Normal Q-Q plot of residuals of weight change.

We could also test whether the variances differ significantly using

sdtest weight, by(life)

giving the output shown in Display 2.1. There is no evidence that the
variances differ (p = 0.57). Note that the test for equal variances is only
appropriate if the variable may be assumed to be normally distributed
in each population.

Having found no strong evidence that the assumptions of the t-test
are not valid for weight gain, we can proceed to apply a t-test:

ttest weight, by(life)

Display 2.2 shows that the difference in means is estimated as −0.32
with a 95% confidence interval from −1.39 to 0.74. The two-tailed p-
value is 0.55, so there is no evidence that the populations differ in their
mean weight change.

Now suppose we wish to compare the prevalence of depression be-
tween suicidal and non-suicidal women. The two categorical variables
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Variance ratio test

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

no 45 1.408889 .3889616 2.609234 .6249883 2.19279
yes 61 1.731148 .3617847 2.825629 1.00747 2.454825

combined 106 1.59434 .2649478 2.727805 1.068997 2.119682

Ho: sd(no) = sd(yes)

F(44,60) observed = F_obs = 0.853
F(44,60) lower tail = F_L = F_obs = 0.853
F(44,60) upper tail = F_U = 1/F_obs = 1.173

Ha: sd(no) < sd(yes) Ha: sd(no) != sd(yes) Ha: sd(no) > sd(yes)
P < F_obs = 0.2919 P < F_L + P > F_U = 0.5724 P > F_obs = 0.7081

Display 2.1

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

no 45 1.408889 .3889616 2.609234 .6249883 2.19279
yes 61 1.731148 .3617847 2.825629 1.00747 2.454825

combined 106 1.59434 .2649478 2.727805 1.068997 2.119682

diff -.3222587 .5376805 -1.388499 .743982

Degrees of freedom: 104

Ho: mean(no) - mean(yes) = diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
t = -0.5993 t = -0.5993 t = -0.5993

P < t = 0.2751 P > |t| = 0.5502 P > t = 0.7249

Display 2.2
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can be cross-tabulated and the appropriate chi-squared statistic calcu-
lated using a single command:

tabulate life depress, row chi2

The output is shown in Display 2.3. Here the row option was used

Key

frequency
row percentage

DEPRESS
LIFE 1 2 3 Total

no 26 24 1 51
50.98 47.06 1.96 100.00

yes 0 42 16 58
0.00 72.41 27.59 100.00

Total 26 66 17 109
23.85 60.55 15.60 100.00

Pearson chi2(2) = 43.8758 Pr = 0.000

Display 2.3

to display row-percentages, making it easier to compare the groups of
women. For example, 51% of non-suicidal women are not depressed at
all, compared with 0% of suicidal women. The value of the chi-squared
statistic implies that there is a highly significant association between
depression and suicidal thoughts (p < 0.001). Note that this test does
not take account of the ordinal nature of depression and is therefore
likely to be less sensitive than, for example, ordinal regression (see
Chapter 6). Since some cells in the cross classification have only small
counts, we might want to use Fisher’s exact test (see Everitt, 1992)
rather than the chi-squared test. The necessary command (without
reproducing the table) is as follows:

tabulate life depress, exact nofreq

Fisher’s exact = 0.000

Again we find evidence of a strong relationship between depression and
suicidal thoughts.
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We now test the null hypothesis that the proportion of women who
have lost interest in sex does not differ between the populations of
suicidal and non-suicidal women. We can obtain the relevant table and
both the chi-squared test and Fisher’s exact tests using

tabulate life sex, row chi2 exact

with results shown in Display 2.4. Therefore, those who have thought

Key

frequency
row percentage

SEX
LIFE no yes Total

no 12 38 50
24.00 76.00 100.00

yes 5 58 63
7.94 92.06 100.00

Total 17 96 113
15.04 84.96 100.00

Pearson chi2(1) = 5.6279 Pr = 0.018
Fisher’s exact = 0.032

1-sided Fisher’s exact = 0.017

Display 2.4

about ending their lives are more likely to have lost interest in sex than
those who have not (92% compared with 76%).

The correlations between the three variables weight, IQ, and age
can be found using the correlate command

corr weight iq age

(see Display 2.5). This correlation matrix has been evaluated for those
100 women who had complete data on all three variables. An alterna-
tive approach is to use the command pwcorr to include, for each corre-
lation, all observations that have complete data for the corresponding
pair of variables, resulting in different sample sizes for different corre-
lations. These pairwise correlations can be obtained together with the
sample sizes and p-values using

pwcorr weight iq age, obs sig

© 2004 by CRC Press LLC 



(obs=100)

weight iq age

weight 1.0000
iq -0.2920 1.0000
age 0.4131 -0.4363 1.0000

Display 2.5

(see Display 2.6).

weight iq age

weight 1.0000

107

iq -0.2920 1.0000
0.0032

100 110

age 0.4156 -0.4345 1.0000
0.0000 0.0000

107 110 118

Display 2.6

The corresponding scatterplot matrix is obtained using graph matrix
as follows:

graph matrix weight iq age, half jitter(1) /*
*/ msymbol(circle_hollow) msize(small) /*
*/ diagonal("Weight change" "IQ" "Age")

where jitter(1) randomly moves the points by a very small amount
to stop them overlapping completely due to the discrete nature of age
and IQ. The resulting graph is shown in Figure 2.3. We see that older,
psychiatrically ill females tend to put on more weight than younger ones
as do less intelligent women. However, older women in this sample also
tended to be less intelligent so that age and intelligence are confounded.

It is of some interest to assess whether age and weight change have
the same relationship in suicidal as in non-suicidal women. We shall
do this informally by constructing a single scatterplot of weight change
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Figure 2.3: Scatterplot matrix for weight, IQ, and age.

against age in which the women in the two groups are represented
by different symbols. This is easily done by simply specifying two
(overlaid) scatterplots as follows:

twoway (scatter weight age if life==1, msymbol(circle) /*
*/ mcolor(black) jitter(1)) /*
*/ (scatter weight age if life==2, msymbol(x) /*
*/ mcolor(black) jitter(1)), legend(order(1 "no" 2 "yes"))

The resulting graph in Figure 2.4 shows that within both groups, higher
age is associated with larger weight increases, and the groups do not
form distinct ‘clusters’.

Finally, an appropriate correlation between depression and anxiety
is Kendall’s tau-b which can be obtained using

ktau depress anxiety

Number of obs = 107
Kendall’s tau-a = 0.2827
Kendall’s tau-b = 0.4951
Kendall’s score = 1603

SE of score = 288.279 (corrected for ties)

Test of Ho: depress and anxiety are independent
Prob > |z| = 0.0000 (continuity corrected)
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Figure 2.4: Scatterplot of weight against age.

giving a value of 0.50 with an approximate p-value of p < 0.001. De-
pression and anxiety are clearly related in these psychiatrically unwell
women.

2.4 Exercises

1. Tabulate the mean weight change by level of depression.
2. By looping through the variables age, iq, and weight using foreach,

tabulate the means and standard deviations for each of these vari-
ables by life.

3. Use search nonparametric or search mann or search whitney
to find help on how to run the Mann-Whitney U -test.

4. Compare the weight changes between the two groups using the
Mann-Whitney U -test.

5. Form a scatterplot for IQ and age using different symbols for the
two groups (life=1 and life=2). Explore the use of the option
jitter(#) for different integers # to stop symbols overlapping.

6. Having tried out all these commands interactively, create a do-
file containing these commands and run the do-file. In the graph
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commands, use the option saving(filename,replace) to save the
graphs in the current directory and view the graphs later using the
command graph use filename.

See also Exercises in Chapter 6.
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Chapter 3

Multiple Regression:

Determinants of Pollution

in U.S. Cities

3.1 Description of data

Data on air pollution in 41 U.S. cities were collected by Sokal and
Rohlf (1981) from several U.S. government publications and are re-
produced here in Table 3.1. (The data are also in Hand et al., 1994.)
There is a single dependent variable, so2, the annual mean concentra-
tion of sulphur dioxide, in micrograms per cubic meter. These data are
means for the three years 1969 to 1971 for each city. The values of six
explanatory variables, two of which concern human ecology and four
climate, are also recorded; details are as follows:

� temp: average annual temperature in ◦F
� manuf: number of manufacturing enterprises employing 20 or

more workers
� pop: population size (1970 census) in thousands
� wind: average annual wind speed in miles per hour
� precip: average annual precipitation in inches
� days: average number of days with precipitation per year
The main question of interest about these data is how the pollution

level as measured by sulphur dioxide concentration is determined by
the six explanatory variables. The central method of analysis will be
multiple regression.
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Table 3.1 Data in usair.dat

Town SO2 temp manuf pop wind precip days
Phoenix 10 70.3 213 582 6.0 7.05 36
Little Rock 13 61.0 91 132 8.2 48.52 100
San Francisco 12 56.7 453 716 8.7 20.66 67
Denver 17 51.9 454 515 9.0 12.95 86
Hartford 56 49.1 412 158 9.0 43.37 127
Wilmington 36 54.0 80 80 9.0 40.25 114
Washington 29 57.3 434 757 9.3 38.89 111
Jackson 14 68.4 136 529 8.8 54.47 116
Miami 10 75.5 207 335 9.0 59.80 128
Atlanta 24 61.5 368 497 9.1 48.34 115
Chicago 110 50.6 3344 3369 10.4 34.44 122
Indianapolis 28 52.3 361 746 9.7 38.74 121
Des Moines 17 49.0 104 201 11.2 30.85 103
Wichita 8 56.6 125 277 12.7 30.58 82
Louisville 30 55.6 291 593 8.3 43.11 123
New Orleans 9 68.3 204 361 8.4 56.77 113
Baltimore 47 55.0 625 905 9.6 41.31 111
Detroit 35 49.9 1064 1513 10.1 30.96 129
Minneapolis 29 43.5 699 744 10.6 25.94 137
Kansas 14 54.5 381 507 10.0 37.00 99
St. Louis 56 55.9 775 622 9.5 35.89 105
Omaha 14 51.5 181 347 10.9 30.18 98
Albuquerque 11 56.8 46 244 8.9 7.77 58
Albany 46 47.6 44 116 8.8 33.36 135
Buffalo 11 47.1 391 463 12.4 36.11 166
Cincinnati 23 54.0 462 453 7.1 39.04 132
Cleveland 65 49.7 1007 751 10.9 34.99 155
Columbia 26 51.5 266 540 8.6 37.01 134
Philadelphia 69 54.6 1692 1950 9.6 39.93 115
Pittsburgh 61 50.4 347 520 9.4 36.22 147
Providence 94 50.0 343 179 10.6 42.75 125
Memphis 10 61.6 337 624 9.2 49.10 105
Nashville 18 59.4 275 448 7.9 46.00 119
Dallas 9 66.2 641 844 10.9 35.94 78
Houston 10 68.9 721 1233 10.8 48.19 103
Salt Lake City 28 51.0 137 176 8.7 15.17 89
Norfolk 31 59.3 96 308 10.6 44.68 116
Richmond 26 57.8 197 299 7.6 42.59 115
Seattle 29 51.1 379 531 9.4 38.79 164
Charleston 31 55.2 35 71 6.5 40.75 148
Milwaukee 16 45.7 569 717 11.8 29.07 123
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3.2 The multiple regression model

The multiple regression model has the general form

yi = β0 + β1x1i + β2x2i + · · · + βpxpi + εi (3.1)

where yi is a continuous response (or dependent) variable for the ith
member of the sample, x1i, x2i, · · · , xpi are a set of explanatory (or
independent) variables or covariates, β1, β2, · · · , βp are regression co-
efficients, and εi is a residual or error term with zero mean that is
uncorrelated with the explanatory variables. It follows that the ex-
pected value of the response for given values of the covariates xT

i =
(1, x1i, x2i, · · · , xpi) is

E(yi|xi) = β0 + β1x1i + β2x2i + · · · + βpxpi.

This is also the value we would predict for a new individual with co-
variate values xi if we knew the regression coefficients.

Each regression coefficient represents the mean change in the re-
sponse variable when the corresponding explanatory variable increases
by one unit and all other explanatory variables remain constant. The
coefficients therefore represent the effects of each explanatory variable,
controlling for all other explanatory variables in the model, giving rise
to the term ‘partial’ regression coefficients. The residual is the differ-
ence between the observed value of the response and the value predicted
by the explanatory variables.

The regression coefficients β0, β1, · · · , βp are generally estimated by
least squares; in other words the estimates β̂k minimize the sum of the
squared differences between observed and predicted responses, or the
sum of squared estimated residuals,

n∑
i= 1

[yi − (β̂0 + β̂1x1i + β̂2x2i + · · · + β̂pxpi)]2. (3.2)

Significance tests for the regression coefficients can be derived by as-
suming that the error terms are independently normally distributed
with zero mean and constant variance σ2.

For n observations of the response and explanatory variables, the
regression model may be written concisely as

y = Xβ + ε (3.3)

where y is the n × 1 vector of responses, X is an n × (p + 1) matrix
of known constants, the first column containing a series of ones corre-
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sponding to the term β0 in (3.1), and the remaining columns values of
the explanatory variables. The elements of the vector β are the regres-
sion coefficients β0, · · · , βp, and those of the vector ε, the error terms
ε1, · · · , εn. The least squares estimates of the regression coefficients can
then be written as

β̂ = (X′X)−1X′y

and the variances and covariances of these estimates can be found from

S
β̂

= s2(X′X)−1,

where s2 is an estimate of the residual variance σ2 given by the sum
of squared estimated residuals in equation (3.2) divided by n−p−1.
The goodness of fit of the model is often expressed in terms of the
percentage of variance of the response variable explained by the ex-
planatory variables, given by R2, the square of the multiple correlation
coefficient. The multiple correlation coefficient is just the correlation
between the observed response variable and the response predicted by
the model. For full details of multiple regression see, for example,
Rawlings et al. (1998).

3.3 Analysis using Stata

Assuming the data are available as an ASCII file usair.dat in the
current directory and that the file contains city names (abbreviated
versions of those in Table 3.1), they may be read in for analysis using
the following instruction:

infile str10 town so2 temp manuf pop /*
*/ wind precip days using usair.dat

Here we had to declare the ‘type’ for the string variable town as str10
which stands for ‘string variable with 10 characters’.

Before undertaking a formal regression analysis of these data, it will
be helpful to examine them graphically using a scatterplot matrix. Such
a display is useful in assessing the general relationships between the
variables, in identifying possible outliers, and in highlighting potential
collinearity problems amongst the explanatory variables. The basic
plot can be obtained using

graph matrix so2 temp manuf pop wind precip days

The resulting diagram is shown in Figure 3.1. Several of the scatter-
plots show evidence of outliers, and the relationship between manuf
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Figure 3.1: Scatterplot matrix.

and pop is very strong suggesting that using both as explanatory vari-
ables in a regression analysis may lead to problems (see later). The
relationships of particular interest, namely those between so2 and the
explanatory variables (the relevant scatterplots are those in the first
row of Figure 3.1), indicate some possible nonlinearity. A more infor-
mative, although slightly more ‘messy’ diagram can be obtained if the
plotted points are labeled with the associated town name. We first
create a variable containing the first three characters of the strings in
town using the function substr()

gen str3 twn = substr(town,1,3)

We can then create a scatterplot matrix with these three-character
town labels using

graph matrix so2-days, msymbol(none) mlabel(twn) /*
*/ mlabposition(0)

The mlabel() option labels the points with the names in the twn vari-
able. By default, a symbol would also be plotted and this can be
suppressed using msymbol(none); mlabposition(0) centers the labels
where the symbol would normally go. The resulting diagram appears in
Figure 3.2. Clearly, Chicago and to a lesser extent Philadelphia might
be considered outliers. Chicago has such a high degree of pollution
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compared with the other cities that it should perhaps be considered
as a special case and excluded from further analysis. We can remove
Chicago using

drop if town=="Chicago"

The command regress may be used to fit a basic multiple regres-
sion model. The necessary Stata instruction to regress sulphur dioxide
concentration on the six explanatory variables is

regress so2 temp manuf pop wind precip days

or, alternatively,

regress so2 temp-days

(see Display 3.1).

Source SS df MS Number of obs = 40
F( 6, 33) = 6.20

Model 8203.60523 6 1367.26754 Prob > F = 0.0002
Residual 7282.29477 33 220.675599 R-squared = 0.5297

Adj R-squared = 0.4442
Total 15485.9 39 397.074359 Root MSE = 14.855

so2 Coef. Std. Err. t P>|t| [95% Conf. Interval]

temp -1.268452 .6305259 -2.01 0.052 -2.551266 .0143631
manuf .0654927 .0181777 3.60 0.001 .0285098 .1024756

pop -.039431 .0155342 -2.54 0.016 -.0710357 -.0078264
wind -3.198267 1.859713 -1.72 0.095 -6.981881 .5853468

precip .5136846 .3687273 1.39 0.173 -.2364966 1.263866
days -.0532051 .1653576 -0.32 0.750 -.3896277 .2832175

_cons 111.8709 48.07439 2.33 0.026 14.06278 209.679

Display 3.1

The main features of interest in the output in Display 3.1 are the
analysis of variance table and the parameter estimates. In the for-
mer, the ratio of the model mean square to the residual mean square
gives an F -test for the hypothesis that all the regression coefficients
in the fitted model are zero (except the constant β0). The resulting
F -statistic with 6 and 33 degrees of freedom takes the value 6.20 and
is shown on the right-hand side; the associated p-value is very small.
Consequently, the hypothesis is rejected. The square of the multiple
correlation coefficient (R2) is 0.53 showing that 53% of the variance of
sulphur dioxide concentration is accounted for by the six explanatory
variables of interest.
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Figure 3.2: Scatterplot matrix with town labels.
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The adjusted R2 statistic is an estimate of the population R2 taking
account of the fact that the parameters were estimated from the data.
The statistic is calculated as

adj R2 = 1 − (n − 1)(1 − R2)
n − p

(3.4)

where n is the number of observations used in fitting the model. The
root MSE is simply the square root of the residual mean square in the
analysis of variance table, which itself is an estimate of the parameter
σ2. The estimated regression coefficients give the estimated change in
the response variable produced by a unit change in the correspond-
ing explanatory variable with the remaining explanatory variables held
constant.

One concern generated by the initial graphical material on this
data was the strong relationship between the two explanatory variables
manuf and pop. The correlation of these two variables is obtained by
using

correlate manuf pop

(obs=40)

manuf pop

manuf 1.0000
pop 0.8906 1.0000

The strong linear dependence might be a source of collinearity prob-
lems and can be investigated further by calculating what are known as
variance inflation factors for each of the explanatory variables. These
are given by

VIF(xk) =
1

1 − R2
k

(3.5)

where VIF(xk) is the variance inflation factor for explanatory variable
xk, and R2

k is the square of the multiple correlation coefficient obtained
from regressing xk on the remaining explanatory variables.

The variance inflation factors can be obtained using the vif com-
mand after regress:

vif

(see Display 3.2).
Chatterjee et al. (1999) give the following ‘rules-of-thumb’ for eval-

uating these factors:
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Variable VIF 1/VIF

manuf 6.28 0.159275
pop 6.13 0.163165
temp 3.72 0.269156
days 3.47 0.287862

precip 3.41 0.293125
wind 1.26 0.790619

Mean VIF 4.05

Display 3.2

� Values larger than 10 give evidence of collinearity.
� A mean of the VIF factors considerably larger than one suggests

collinearity.
Here there are no values greater than 10 (as an exercise we suggest

readers also calculate the VIFs when the observations for Chicago are
included), but the mean value of 4.05 gives some cause for concern. A
simple (although not necessarily the best) way to proceed is to drop
one of manuf or pop. Another possibility is to replace manuf by a new
variable equal to manuf divided by pop, representing the number of
large manufacturing enterprises per thousand inhabitants (see Exercise
2). However, we shall simply exclude manuf and repeat the regression
analysis using the five remaining explanatory variables:

regress so2 temp pop wind precip days

The output is shown in Display 3.3.
Now recompute the variance inflation factors:

vif

The variance inflation factors in Display 3.4 are now satisfactory.
The very general hypothesis concerning all regression coefficients

mentioned previously is not usually of great interest in most appli-
cations of multiple regression because it is most unlikely that all the
chosen explanatory variables will be unrelated to the response variable.
The more interesting question is whether a subset of the regression co-
efficients are zero, implying that not all the explanatory variables are
of use in predicting the response variable. A preliminary assessment of
the likely importance of each explanatory variable can be made using
the table of estimated regression coefficients and associated statistics.
Using a conventional 5% criterion, the only ‘significant’ coefficient is
that for the variable temp. Unfortunately, this very simple approach is
not in general suitable, since in most cases the explanatory variables
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Source SS df MS Number of obs = 40
F( 5, 34) = 3.58

Model 5339.03465 5 1067.80693 Prob > F = 0.0105
Residual 10146.8654 34 298.437216 R-squared = 0.3448

Adj R-squared = 0.2484
Total 15485.9 39 397.074359 Root MSE = 17.275

so2 Coef. Std. Err. t P>|t| [95% Conf. Interval]

temp -1.867665 .7072827 -2.64 0.012 -3.305037 -.430294
pop .0113969 .0075627 1.51 0.141 -.0039723 .0267661
wind -3.126429 2.16257 -1.45 0.157 -7.5213 1.268443

precip .6021108 .4278489 1.41 0.168 -.2673827 1.471604
days -.020149 .1920012 -0.10 0.917 -.4103424 .3700445

_cons 135.8565 55.36797 2.45 0.019 23.33529 248.3778

Display 3.3

Variable VIF 1/VIF

days 3.46 0.288750
temp 3.46 0.289282

precip 3.40 0.294429
wind 1.26 0.790710
pop 1.07 0.931015

Mean VIF 2.53

Display 3.4
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are correlated, and the t-tests will not be independent of each other.
Consequently, removing a particular variable from the regression will
alter both the estimated regression coefficients of the remaining vari-
ables and their standard errors. A more involved approach to identify-
ing important subsets of explanatory variables is therefore required. A
number of procedures are available.
1. Confirmatory approach: Considering a model with a small set of

explanatory variables chosen according to substantive theory and
testing particular a priori hypotheses. Modifying the model by
removing some variables, considering interactions, etc. to achieve a
better fit to the data.

2. Exploratory approach: Automatic selection methods, which are of
the following types:
a. Forward selection: This method starts with a model containing

none of the explanatory variables and then considers variables
one by one for inclusion. At each step, the variable added is the
one that results in the biggest increase in the model or regres-
sion sum of squares. An F -type statistic is used to judge when
further additions would not represent a significant improvement
in the model.

b. Backward elimination: Here variables are considered for removal
from an initial model containing all the explanatory variables.
At each stage, the variable chosen for exclusion is the one lead-
ing to the smallest reduction in the regression sum of squares.
Again, an F -type statistic is used to judge when further exclu-
sions would represent a significant deterioration in the model.

c. Stepwise regression: This method is essentially a combination
of the previous two. The forward selection procedure is used to
add variables to an existing model and, after each addition, a
backward elimination step is introduced to assess whether vari-
ables entered earlier might now be removed because they no
longer contribute significantly to the model.

It is clear that the automatic selection methods are based on a large
number of significance tests, one for each variable considered for inclu-
sion or exclusion in each step. It is well-known that the probability
of a false positive result or Type I error increases with the number of
tests. The chosen model should therefore be interpreted with extreme
caution, particularly if there were a large number of candidate vari-
ables. Another problem with the three automatic procedures is that
they often do not lead to the same model; see also Harrell (2001) for
a discussion of model selection strategies. Although we would gener-
ally not recommend automatic procedures, we will use them here for
illustration.
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But first we will take the confirmatory approach to investigate if
climate (temp, wind, precip, days) or human ecology (pop) or both
are important predictors of air pollution. We treat these groups of
variables as single terms, allowing either all variables in a group to be
included or none. This can be done using the following instruction:

sw regress so2 (temp wind precip days) (pop), pe(0.05)

(see Display 3.5). Note the grouping as required. The pe term specifies

begin with empty model
p = 0.0119 < 0.0500 adding temp wind precip days

Source SS df MS Number of obs = 40
F( 4, 35) = 3.77

Model 4661.27545 4 1165.31886 Prob > F = 0.0119
Residual 10824.6246 35 309.274987 R-squared = 0.3010

Adj R-squared = 0.2211
Total 15485.9 39 397.074359 Root MSE = 17.586

so2 Coef. Std. Err. t P>|t| [95% Conf. Interval]

temp -1.689848 .7099204 -2.38 0.023 -3.131063 -.2486329
wind -2.309449 2.13119 -1.08 0.286 -6.635996 2.017097

precip .5241595 .4323535 1.21 0.234 -.3535647 1.401884
days .0119373 .1942509 0.06 0.951 -.382413 .4062876

_cons 123.5942 55.75236 2.22 0.033 10.41091 236.7775

Display 3.5

the significance level of the F -test for addition to the model; terms
with a p-value less than the figure specified will be included. Here,
only the climate variables are shown since they are jointly significant
(p = 0.0119) at the significance level for inclusion.

As an illustration of the automatic selection procedures, the follow-
ing Stata instruction applies the backward elimination method, with
explanatory variables whose F -values for removal have associated p-
values greater than 0.2 being removed:

sw regress so2 temp pop wind precip days, pr(0.2)

(see Display 3.6). With the chosen significance level, only the variable
days is excluded.

The next stage in the analysis should be an examination of the
residuals from the chosen model; that is, the differences between the
observed and fitted values of sulphur dioxide concentration. Such a
procedure is vital for assessing model assumptions, identifying any un-
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begin with full model
p = 0.9170 >= 0.2000 removing days

Source SS df MS Number of obs = 40
F( 4, 35) = 4.60

Model 5335.74801 4 1333.937 Prob > F = 0.0043
Residual 10150.152 35 290.004343 R-squared = 0.3446

Adj R-squared = 0.2696
Total 15485.9 39 397.074359 Root MSE = 17.03

so2 Coef. Std. Err. t P>|t| [95% Conf. Interval]

temp -1.810123 .4404001 -4.11 0.000 -2.704183 -.9160635
pop .0113089 .0074091 1.53 0.136 -.0037323 .0263501
wind -3.085284 2.096471 -1.47 0.150 -7.341347 1.170778

precip .5660172 .2508601 2.26 0.030 .0567441 1.07529
_cons 131.3386 34.32034 3.83 0.001 61.66458 201.0126

Display 3.6

usual features in the data indicating outliers, and suggesting possibly
simplifying transformations. The most useful ways of examining the
residuals are graphical, and the most commonly used plots are as fol-
lows:

� A plot of the residuals against each explanatory variable in the
model. The presence of a curvilinear relationship, for example,
would suggest that a higher-order term, perhaps a quadratic in
the explanatory variable, should be added to the model.

� A plot of the residuals against predicted values of the response
variable. If the variance of the response appears to increase or
decrease with predicted value, a transformation of the response
may be in order.

� A normal probability plot of the residuals—after all systematic
variation has been removed from the data, the residuals should
look like a sample from the normal distribution. A plot of the
ordered residuals against the expected order statistics from a
normal distribution provides a graphical check on this assump-
tion.

The first two plots can be obtained after using the regress proce-
dure with the rvpplot and rvfplot instructions. For example, for the
model chosen by the backward selection procedure, a plot of residuals
against predicted values with the first three letters of the town name
used to label the points is obtained using the instruction

rvfplot, mlabel(twn)
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Figure 3.3: Residuals against predicted response.

The resulting plot is shown in Figure 3.3, and indicates a possible prob-
lem, namely the apparently increasing variance of the residuals as the
fitted values increase (see also Chapter 7). Perhaps some thought needs
to be given to the possible transformations of the response variable (see
exercises).

Next, graphs of the residuals plotted against each of the four ex-
planatory variables can be obtained using the following foreach loop:

foreach x in pop temp wind precip {
rvpplot `x´, mlabel(twn)
more

}

Here more causes Stata to pause after each graph has been plotted
until the user presses any key. The resulting graphs are shown in
Figures 3.4 to 3.7. In each graph the point corresponding to the
town Providence is somewhat distant from the bulk of the points,
and the graph for wind has perhaps a ‘hint’ of a curvilinear structure.
Note that the appearance of these graphs could be improved using the
mlabvposition(varname) option to specify the ‘clock positions’ (e.g.
12 is straight above) of the labels relative to the points.

The simple residuals plotted by rvfplot and rvpplot have a distri-
bution that is scale dependent because the variance of each is a func-
tion of both σ2 and the diagonal values of the so-called ‘hat’ matrix,
H, given by

© 2004 by CRC Press LLC 



Pho

Lro
SFr

Den

Har

Wil

Was
Jac

Mia

Atl

Ind
Des

Wic
Lou

New

Bal

Det

MinKan

StL

Oma

Alb

Alb

Buf

Cin

Cle

Col

Phi
Pit

Pro

Mem
Nas

Dal

Hou

SLC

Nor

Ric
Sea

Cha

Mil−
20

0
20

40
60

R
es

id
ua

ls

0 500 1000 1500 2000
pop

Figure 3.4: Residuals against population.
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Figure 3.5: Residuals against temperature.
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Figure 3.6: Residuals against wind speed.

Pho

Lro
SFr

Den

Har

Wil

Was
Jac

Mia

Atl

Ind
Des

Wic
Lou

New

Bal

Det

Min Kan

StL

Oma

Alb

Alb

Buf

Cin

Cle

Col

Phi
Pit

Pro

Mem
Nas

Dal

Hou

SLC

Nor

Ric
Sea

Cha

Mil−
20

0
20

40
60

R
es

id
ua

ls

10 20 30 40 50 60
precip

Figure 3.7: Residuals against precipitation.
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H = X(X′X)−1X′ (3.6)

(see Cook and Weisberg (1982) for a full explanation of the hat ma-
trix). Consequently, it is often more useful to work with a standardized
version

ri =
yi − ŷi

s
√

1 − hii

, (3.7)

where s2 is the estimate of σ2, ŷi is the predicted value of the response,
and hii is the ith diagonal element of H.

These standardized residuals can be obtained using the predict
command. For example, to obtain a normal probability plot of the
standardized residuals and to plot them against the fitted values re-
quires the following instructions:

predict fit
predict sdres, rstandard
pnorm sdres
twoway scatter sdres fit, mlabel(twn)

The first instruction stores the fitted values in the variable fit, the sec-
ond stores the standardized residuals in the variable sdres, the third
produces a normal probability plot (Figure 3.8), and the last instruc-
tion produces the graph of standardized residuals against fitted values,
which is shown in Figure 3.9.

The normal probability plot indicates that the distribution of the
residuals departs somewhat from normality. The pattern in the plot
shown in Figure 3.9 is identical to that in Figure 3.3 but here val-
ues outside (−2,2) indicate possible outliers, in this case the point
corresponding to the town Providence. Analogous plots to those in
Figures 3.4 to 3.7 could be obtained in the same way.

A rich variety of other diagnostics for investigating fitted regres-
sion models has been developed and many of these are available with
the regress procedure. Illustrated here is the use of two of these,
namely the partial residual plot (Mallows, 1973) and Cook’s distance
(Cook, 1977, 1979). The former are useful in identifying whether, for
example, quadratic or higher order terms are needed for any of the ex-
planatory variables; the latter measures the change to the estimates of
the regression coefficients that results from deleting each observation
and can be used to indicate those observations that may be having an
undue influence on the estimates.
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Figure 3.8: Normal probability plot of standardized residuals.
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Figure 3.9: Standardized residuals against predicted values.

© 2004 by CRC Press LLC 



−
20

0
20

40
60

C
om

po
ne

nt
 p

lu
s 

re
si

du
al

0 500 1000 1500 2000
pop

Figure 3.10: Partial residual plot for population.

The partial residual plots are obtained using the cprplot command.
For the four explanatory variables in the selected model for the pollu-
tion data, the required plots are obtained as follows:

foreach x in pop temp wind precip {
cprplot `x´, lowess
more

}

The lowess option produces a locally weighted regression curve or
lowess. The resulting graphs are shown in Figures 3.10 to 3.13. The
graphs have to be examined for nonlinearities and for assessing whether
the regression line, which has slope equal to the estimated effect of the
corresponding explanatory variable in the chosen model, fits the data
adequately. The added lowess curve is generally helpful for both. None
of the four graphs gives any obvious indication of nonlinearity.

The Cook’s distances are found by again using the predict in-
struction; the following calculates these statistics for the chosen model
for the pollution data and lists the observations where the statistic is
greater than 4/40 (4/n), which is usually the value regarded as indi-
cating possible problems.

predict cook, cooksd
list town so2 cook if cook>4/40
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Figure 3.11: Partial residual plot for temperature.
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Figure 3.12: Partial residual plot for wind speed.
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Figure 3.13: Partial residual plot for precipitation.

town so2 cook

1. Phoenix 10 .2543286
28. Philad 69 .3686437
30. Provid 94 .2839324

The first instruction stores the Cook’s distance statistics in the vari-
able cook, and the second lists details of those observations for which
the statistic is above the suggested cut-off point.

There are three influential observations. Several of the diagnostic
procedures used previously also suggest these observations as possibly
giving rise to problems, and some consideration should be given to re-
peating the analyses with these three observations removed in addition
to the initial removal of Chicago.

3.4 Exercises

1. Repeat the analyses described in this chapter after removing the
three possible outlying observations identified by Cook’s distances.

2. The solution to the high correlation between the variables manuf
and pop adopted in the chapter was simply to remove the for-
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mer. Investigate other possibilities such as defining a new variable
manuf/pop in addition to pop to be used in the regression analysis.

3. Consider the possibility of taking a transformation of sulphur diox-
ide pollution before undertaking any regression analyses. For ex-
ample, try a log transformation.

4. Explore the use of the many other diagnostic procedures available
with the regress procedure.
See also Exercises in Chapter 14.
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Chapter 4

Analysis of Variance I:

Treating Hypertension

4.1 Description of data

Maxwell and Delaney (1990) describe a study in which the effects of
three possible treatments for hypertension were investigated. The de-
tails of the treatments are as follows:

Treatment Description Levels

drug medication drug X, drug Y, drug Z
biofeed biofeedback present, absent
diet special diet present, absent

All 12 combinations of the three treatments were included in a
3 × 2 × 2 design. Seventy-two subjects suffering from hypertension
were recruited, and six were allocated randomly to each combination of
treatments. Blood pressure measurements were made on each subject
leading to the data shown in Table 4.1. Questions of interest concern
differences in mean blood pressure for the different levels of the three
treatments and the effects of interactions between the treatments on
blood pressure.

4.2 Analysis of variance model

A suitable model for these data is
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Table 4.1 Data in bp.raw

Biofeedback No Biofeedback
drug X drug Y drug Z drug X drug Y drug Z

Diet absent
170 186 180 173 189 202
175 194 187 194 194 228
165 201 199 197 217 190
180 215 170 190 206 206
160 219 204 176 199 224
158 209 194 198 195 204

Diet present
161 164 162 164 171 205
173 166 184 190 173 199
157 159 183 169 196 170
152 182 156 164 199 160
181 187 180 176 180 179
190 174 173 175 203 179

yijkl = µ+αi+βj +γk +(αβ)ij +(αγ)ik +(βγ)jk +(αβγ)ijk +εijkl (4.1)

where yijkl represents the blood pressure of the lth subject for the ith
drug, the jth level of biofeedback, and the kth level of diet, µ is the over-
all mean, αi, βj , and γk are the main effects for drugs, biofeedback, and
diets, (αβ)ij , (αγ)ik , and (βγ)jk are the first-order interaction terms,
(αβγ)ijk is a second-order interaction term, and εijkl are the residual
or error terms assumed to be normally distributed with zero mean and
variance σ2.

To identify the model, some constraints have to be imposed on the
parameters. The standard constraints are:

∑
i

αi =
∑

j

βj =
∑

k

γk = 0,

∑
i

(αβ)ij =
∑

j

(αβ)ij =
∑

i

(αγ)ik =
∑

k

(αγ)ik

=
∑

j

(βγ)jk =
∑

k

(βγ)jk = 0,

and ∑
i

(αβγ)ijk =
∑

j

(αβγ)ijk =
∑

k

(αβγ)ijk = 0.
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We can test the following null hypotheses:

H
(1)
0 : No drug effect : α1 = α2 = α3 = 0

H
(2)
0 : No biofeedback effect : β1 = β2 = 0

H
(3)
0 : No diet effect : γ1 = γ2 = 0

H(4)
0 : No drug by biofeedback interaction :

(αβ)ij = 0, i = 1, 2, 3; j = 1, 2

H
(5)
0 : No drug by diet interaction : (αγ)ik = 0, i = 1, 2, 3; k = 1, 2

H
(6)
0 : No biofeedback by diet interaction :

(βγ)jk = 0 j = 1, 2; k = 1, 2

H
(7)
0 : No drug by biofeedback by diet interaction :

(αβγ)ijk = 0 i = 1, 2, 3; j = 1, 2; k = 1, 2

Since there are an equal number of observations in each cell of Table
4.1, the total variation in the responses can be partitioned into non-
overlapping parts (an orthogonal partition) representing main effects
and interactions and residual variation suitable for constructing F -tests
for each hypothesis described above. Details can be found in Everitt
(2001).

4.3 Analysis using Stata

Assuming the data are in an ASCII file bp.raw, exactly as shown in
Table 4.1, i.e., 12 rows, the first containing the observations 170 186
180 173 189 202, they can be read into Stata by producing a dictionary
file bp.dct containing the following statements:

dictionary using bp.raw {
_column(6) int bp11
_column(14) int bp12
_column(22) int bp13
_column(30) int bp01
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_column(38) int bp02
_column(46) int bp03

}

and using the following command

infile using bp

Note that it was not necessary to define a dictionary here since the
same result could have been achieved using a simple infile varlist
command (see exercises). Here the variable names end on two digits,
the first standing for the levels of biofeedback (1: present, 0: absent),
and the second for the levels of drug (1,2,3 for X,Y,Z). The final dataset
should have a single variable, bp, that contains all the blood pressures,
and three additional variables, drug, biofeed, and diet, representing
the corresponding levels of drug, biofeedback, and diet.

First, create diet which should take on one value for the first six
rows and another for the following rows. This is achieved using the
commands

gen diet=0 if _n<-6
replace diet=1 if _n>6

or, more concisely, using

gen diet=_n>6

Now use the reshape long command to stack the columns on top of
each other. If we specify bp0 and bp1 as the variable names in the
reshape command, then bp01, bp02, and bp03 are stacked into one
column with variable name bp0 (and similarly for bp1) and another
variable is created that contains the suffixes 1, 2, and 3. We ask for this
latter variable to be called drug using the option j(drug) as follows:

gen id=_n
reshape long bp0 bp1, i(id) j(drug)
list in 1/9

(see Display 4.1). Here, id was generated because we needed to specify
the row indicator in the i() option.

We now need to run the reshape long command again to stack
up the columns bp0 and bp1 and generate the variable biofeed. The
instructions to achieve this and to label all the variables are given
below.

replace id=_n
reshape long bp, i(id) j(biofeed)
replace id=_n

label drop _all
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id drug bp1 bp0 diet

1. 1 1 170 173 0
2. 1 2 186 189 0
3. 1 3 180 202 0
4. 2 1 175 194 0
5. 2 2 194 194 0

6. 2 3 187 228 0
7. 3 1 165 197 0
8. 3 2 201 217 0
9. 3 3 199 190 0

Display 4.1

label define d 0 "absent" 1 "present"
label values diet d
label values biofeed d
label define dr 1 "Drug X" 2 "Drug Y" 3 "Drug Z"
label values drug dr

To begin, it will be helpful to look at some summary statistics for
each of the cells of the design. A simple way of obtaining the required
summary measures is to use the table instruction.

table drug, contents(freq mean bp median bp sd bp)/*
*/ by(diet biofeed)

The standard deviations in Display 4.2 indicate that there are con-
siderable differences in the within cell variability. This may have impli-
cations for the analysis of variance of these data: one of the assumptions
made is that the observations within each cell have the same popula-
tion variance. To begin, however, we will apply the model specified in
Section 3.2 to the raw data using the anova instruction

anova bp drug diet biofeed diet*drug diet*biofeed /*
*/ drug*biofeed drug*diet*biofeed

The resulting ANOVA table is shown in Display 4.3.
The Root MSE is simply the square root of the residual mean square,

with R-squared and Adj R-squared being as described in Chapter 3.
The F -statistic of each effect represents the mean sum of squares for
that effect, divided by the residual mean sum of squares, given un-
der the heading MS. There are highly significant main effects of drug
(F2,60 = 11.73, p < 0.001), diet (F1,60 = 33.20, p < 0.001), and
biofeed (F1,60 = 13.07, p < 0.001). The two-way interactions are not
significant at the 5% level but the three-way interaction drug by diet

© 2004 by CRC Press LLC 



diet,
biofeed
and drug Freq. mean(bp) med(bp) sd(bp)

absent
absent

Drug X 6 188 192 10.86278
Drug Y 6 200 197 10.07968
Drug Z 6 209 205 14.3527

absent
present

Drug X 6 168 167.5 8.602325
Drug Y 6 204 205 12.68069
Drug Z 6 189 190.5 12.61745

present
absent

Drug X 6 173 172 9.797959
Drug Y 6 187 188 14.01428
Drug Z 6 182 179 17.1114

present
present

Drug X 6 169 167 14.81891
Drug Y 6 172 170 10.93618
Drug Z 6 173 176.5 11.6619

Display 4.2

Number of obs = 72 R-squared = 0.5840
Root MSE = 12.5167 Adj R-squared = 0.5077

Source Partial SS df MS F Prob > F

Model 13194 11 1199.45455 7.66 0.0000

drug 3675 2 1837.5 11.73 0.0001
diet 5202 1 5202 33.20 0.0000

biofeed 2048 1 2048 13.07 0.0006
diet*drug 903 2 451.5 2.88 0.0638

diet*biofeed 32 1 32 0.20 0.6529
drug*biofeed 259 2 129.5 0.83 0.4425

drug*diet*biofeed 1075 2 537.5 3.43 0.0388

Residual 9400 60 156.666667

Total 22594 71 318.225352

Display 4.3

© 2004 by CRC Press LLC 



by biofeed is (F2,60 = 3.43, p = 0.04). The existence of a three-way
interaction complicates the interpretation of the other terms in the
model; it implies that the interaction between any two of the factors
is different at the different levels of the third factor. Perhaps the best
way of trying to understand the meaning of the three-way interaction is
to plot a number of interaction diagrams; that is, plots of mean values
for a factor at the different levels of the other factors.

This can be done by first creating a variable predbp containing
the predicted means (which in this case coincide with the observed
cell means because the model fitted is saturated, i.e., the number of
parameters is equal to the number of cell means) using the command

predict predbp

Plots of predbp against biofeed for each level of drug with separate
lines for diet can be obtained using the instruction

twoway (line predbp biofeed if diet==0) /*
*/ (line predbp biofeed if diet==1) , by(drug) /*
*/ xlabel(0 "no biofeed." 1 "biofeed.") /*
*/ ylabel(170 190 210) xtitle(" ") /*
*/ legend(order(1 "no diet" 2 "diet"))

The resulting interaction diagrams are shown in Figure 4.1. For
drug Y, the presence of biofeedback increases the effect of diet (the
vertical distance between the solid and dashed lines), whereas for drug
Z the effect of diet is hardly altered by the presence of biofeedback and
for drug X the effect is decreased.

Tables of the cell means plotted in the interaction diagrams, as well
as the corresponding standard deviations, are produced for each drug
using the following command:

table diet biofeed, contents(mean bp sd bp) by(drug)

giving the output shown in Display 4.4.
As mentioned previously, the observations in the 12 cells of the

3× 2× 2 design have variances that differ considerably. Consequently,
an analysis of variance of the data transformed in some way might
be worth considering. For example, to analyze the log transformed
observations, we can use the following instructions:

gen lbp=log(bp)
anova lbp drug diet biofeed diet*drug diet*biofeed /*

*/ drug*biofeed drug*diet*biofeed

The resulting analysis of variance table is shown in Display 4.5.
The results are similar to those for the untransformed blood pres-

sures. The three-way interaction is only marginally significant. If no
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Figure 4.1: Interaction diagrams showing the interaction between diet
and biofeedback for each level of drug.

drug and biofeed
diet absent present

Drug X
absent 188 168

10.86278 8.602325

present 173 169
9.797959 14.81891

Drug Y
absent 200 204

10.07968 12.68069

present 187 172
14.01428 10.93618

Drug Z
absent 209 189

14.3527 12.61745

present 182 173
17.1114 11.6619

Display 4.4
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Number of obs = 72 R-squared = 0.5776
Root MSE = .068013 Adj R-squared = 0.5002

Source Partial SS df MS F Prob > F

Model .379534762 11 .03450316 7.46 0.0000

diet .149561559 1 .149561559 32.33 0.0000
drug .107061236 2 .053530618 11.57 0.0001

biofeed .061475507 1 .061475507 13.29 0.0006
diet*drug .024011594 2 .012005797 2.60 0.0830

diet*biofeed .000657678 1 .000657678 0.14 0.7075
drug*biofeed .006467873 2 .003233936 0.70 0.5010

diet*drug*biofeed .030299315 2 .015149657 3.28 0.0447

Residual .277545987 60 .004625766

Total .657080749 71 .009254658

Display 4.5

substantive explanation of this interaction is available, it might be bet-
ter to interpret the results in terms of the very significant main effects.
The relevant summary statistics for the log transformed blood pressures
can be obtained using the following instructions:

table drug, contents(mean lbp sd lbp)

table diet, contents(mean lbp sd lbp)

table biofeed, contents(mean lbp sd lbp)

giving the tables in Displays 4.6 to 4.8.

drug mean(lbp) sd(lbp)

Drug X 5.159152 .075955
Drug Y 5.247087 .0903675
Drug Z 5.232984 .0998921

Display 4.6

Drug X appears to produce lower blood pressures as does the special
diet and the presence of biofeedback. Readers are encouraged to try
other transformations.
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diet mean(lbp) sd(lbp)

absent 5.258651 .0915982
present 5.167498 .0781686

Display 4.7

biofeed mean(lbp) sd(lbp)

absent 5.242295 .0890136
present 5.183854 .0953618

Display 4.8

Note that it is easy to estimate the model with main effects only
using regression with dummy variables. Since drug has three levels and
therefore requires two dummy variables, we save some time by using
the xi: prefix as follows:

xi: regress lbp i.drug i.diet i.biofeed

leading to the results shown in Display 4.9. The coefficients represent
the mean differences between each level compared with the reference
level (the omitted categories: drug X, diet absent, and biofeedback
absent) when the other variables are held constant. The p-values are
equal to those of ANOVA except that no overall p-value for drug is
given. This can be obtained using

testparm _Idrug*

( 1) _Idrug_2 = 0
( 2) _Idrug_3 = 0

F( 2, 67) = 10.58
Prob > F = 0.0001

The F -statistic is different from that in the last anova command be-
cause no interactions were included in the model; hence the residual
degrees of freedom and the residual sum of squares have both increased.
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i.drug _Idrug_1-3 (naturally coded; _Idrug_1 omitted)
i.diet _Idiet_0-1 (naturally coded; _Idiet_0 omitted)
i.biofeed _Ibiofeed_0-1 (naturally coded; _Ibiofeed_0 omitted)

Source SS df MS Number of obs = 72
F( 4, 67) = 15.72

Model .318098302 4 .079524576 Prob > F = 0.0000
Residual .338982447 67 .00505944 R-squared = 0.4841

Adj R-squared = 0.4533
Total .657080749 71 .009254658 Root MSE = .07113

lbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Idrug_2 .0879354 .0205334 4.28 0.000 .0469506 .1289203
_Idrug_3 .0738315 .0205334 3.60 0.001 .0328467 .1148163
_Idiet_1 -.0911536 .0167654 -5.44 0.000 -.1246175 -.0576896

_Ibiofeed_1 -.0584406 .0167654 -3.49 0.001 -.0919046 -.0249767
_cons 5.233949 .0187443 279.23 0.000 5.196535 5.271363

Display 4.9

4.4 Exercises

1. Reproduce the result of the command infile using bp without
using the dictionary, and follow the reshape instructions to gener-
ate the required dataset.

2. Produce three diagrams with boxplots of blood pressure (1) for
each level of drug, (2) for each level of diet, and (3) for each level
of biofeedback.

3. Investigate other possible transformations of the data and compare
the resulting analyses of variance with those given in the text.

4. Suppose that in addition to the blood pressure of each of the indi-
viduals in the study, the investigator had also recorded their ages
in file age.dat as shown in Table 4.2. Reanalyze the data using
age as a covariate (see help merge and help anova).
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Table 4.2 Data in
age.dat

id age id age
1 39 37 45
2 39 38 58
3 61 39 61
4 50 40 47
5 51 41 67
6 43 42 49
7 59 43 54
8 50 44 48
9 47 45 46
10 60 46 67
11 77 47 56
12 57 48 54
13 62 49 66
14 44 50 43
15 63 51 47
16 77 52 35
17 56 53 50
18 62 54 60
19 44 55 73
20 61 56 46
21 66 57 59
22 52 58 65
23 53 59 49
24 54 60 52
25 40 61 40
26 62 62 80
27 68 63 46
28 63 64 63
29 47 65 56
30 70 66 58
31 57 67 53
32 51 68 56
33 70 69 64
34 57 70 57
35 64 71 60
36 66 72 48
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Chapter 5

Analysis of Variance II:

Effectiveness of Slimming

Clinics

5.1 Description of data

Slimming clinics aim to help people lose weight by offering encourage-
ment and support about dieting through regular meetings. In a study
of their effectiveness, a 2 × 2 factorial design was used to investigate
whether giving clients a technical manual containing slimming advice
based on psychological behaviorist theory would help them to control
their diet, and how this might be affected by whether a client had al-
ready been trying to slim. The data collected are shown in Table 5.1.
(They are also given in Hand et al., 1994.) The response variable was
defined as follows:

weight after three months of treatment − ideal weight
initial weight − ideal weight

(5.1)

The number of observations in each cell of the design is not the
same, so this is an example of an unbalanced 2×2 design.

5.2 Analysis of variance model

A suitable analysis of variance model for the data is
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Table 5.1 Data in slim.dat

cond status resp cond status resp
1 1 −14.67 1 1 −1.85
1 1 −8.55 1 1 −23.03
1 1 11.61 1 2 0.81
1 2 2.38 1 2 2.74
1 2 3.36 1 2 2.10
1 2 −0.83 1 2 −3.05
1 2 −5.98 1 2 −3.64
1 2 −7.38 1 2 −3.60
1 2 −0.94 2 1 −3.39
2 1 −4.00 2 1 −2.31
2 1 −3.60 2 1 −7.69
2 1 −13.92 2 1 −7.64
2 1 −7.59 2 1 −1.62
2 1 −12.21 2 1 −8.85
2 2 5.84 2 2 1.71
2 2 −4.10 2 2 −5.19
2 2 0.00 2 2 −2.80

yijk = µ + αi + βj + γij + εijk (5.2)

where yijk represents the weight change of the kth individual having
status j and condition i, µ is the overall mean, αi represents the effect
of condition i, βj the effect of status j, γij the status × condition
interaction, and εijk the errors – these are assumed to have a normal
distribution with mean zero and variance σ2.

The unbalanced nature of the slimming data presents some difficul-
ties for analysis not encountered in factorial designs having the same
number of observations in each cell (see the previous chapter). The
main problem is that when the data are unbalanced there is no unique
way of finding a ‘sum of squares’ corresponding to each main effect and
their interactions, because these effects are no longer independent of
one another. If the data were balanced, the among cells sum of squares
would partition orthogonally into three component sums of squares rep-
resenting the two main effects and their interaction. Several methods
have been proposed for dealing with this problem and each leads to a
different partition of the overall sum of squares. The different methods
for arriving at the sums of squares for unbalanced designs can be ex-
plained in terms of the comparisons of different sets of specific models.
For a design with two factors A and B, Stata can calculate the following
types of sums of squares:
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5.2.1 Sequential sums of squares

Sequential sums of squares (also known as hierarchical sums of squares)
represent the effect of adding a term to an existing model. So, for
example, a set of sequential sums of squares such as

Source SS
A SS(A)
B SS(B|A)
AB SS(AB|A,B)

represent a comparison of the following models:
� SS(AB|A,B)—model including an interaction and main effects

compared with one including only main effects.
� SS(B|A)—model including both main effects, but with no in-

teraction, compared with one including only the main effects of
factor A.

� SS(A)—model containing only the A main effect compared with
one containing only the overall mean.

The use of these sums of squares in a series of tables in which the
effects are considered in different orders (see later) will often provide
the most satisfactory way of deciding which model is most appropriate
for the observations. (These are SAS Type I sums of squares—see
Everitt and Der, 2001.)

5.2.2 Unique sums of squares

By default, Stata produces unique sums of squares that represent the
contribution of each term to a model including all the other terms. So,
for a two-factor design, the sums of squares represent the following.

Source SS
A SS(A|B,AB)
B SS(B|A,AB)
AB SS(AB|A,B)

(These are SAS Type III sums of squares.) Note that these sums of
squares generally do not add up to the total sums of squares.

5.2.3 Regression

As we have shown in Chapter 4, ANOVA models may also be estimated
using regression by defining suitable dummy variables. Assume that A
is represented by a single dummy variable. The regression coefficients
for A represents the partial contribution of that variable, adjusted for
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all other variables in the model, say B. This is equivalent to the con-
tribution of A to a model already including B. A complication with
regression models is that, in the presence of an interaction, the p-values
of the terms depend on the exact coding of the dummy variables (see
Aitkin, 1978). The unique sums of squares correspond to regression
where dummy variables are coded in a particular way, for example a
two-level factor can be coded as −1, 1.

There have been numerous discussions over which sums of squares
are most appropriate for the analysis of unbalanced designs. The Stata
manual appears to recommend its default for general use. Nelder (1977)
and Aitkin (1978) however, are strongly critical of ‘correcting’ main ef-
fects for an interaction term involving the same factor; their criticisms
are based on both theoretical and pragmatic arguments and seem com-
pelling. A frequently used approach is therefore to test the highest
order interaction adjusting for all lower order interactions and not vice
versa. Both Nelder and Aitkin prefer the use of Type I sums of squares
in association with different orders of effects as the procedure most
likely to identify an appropriate model for a data set. For a detailed
explanation of the various types of sums of squares, see Boniface (1995).

5.3 Analysis using Stata

The data can be read in from an ASCII file slim.dat in the usual way
using

infile cond status resp using slim.dat

A table showing the unbalanced nature of the 2×2 design can be
obtained from

tabulate cond status

status
cond 1 2 Total

1 5 12 17
2 11 6 17

Total 16 18 34

We now use the anova command with no options specified to obtain
the unique (Type III) sums of squares:

anova resp cond status cond*status

(see Display 5.1).
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Number of obs = 34 R-squared = 0.2103
Root MSE = 5.9968 Adj R-squared = 0.1313

Source Partial SS df MS F Prob > F

Model 287.231861 3 95.7439537 2.66 0.0659

cond 2.19850409 1 2.19850409 0.06 0.8064
status 265.871053 1 265.871053 7.39 0.0108

cond*status .130318264 1 .130318264 0.00 0.9524

Residual 1078.84812 30 35.961604

Total 1366.07998 33 41.3963631

Display 5.1

Our recommendation is that the sums of squares shown in this table
are not used to draw inferences because the main effects have been
adjusted for the interaction.

Instead we prefer an analysis that consists of obtaining two sets
of sequential sums of squares, the first using the order cond status
cond*status and the second the order status cond cond*status.
The necessary instructions are

anova resp cond status cond*status, sequential

(see Display 5.2).

Number of obs = 34 R-squared = 0.2103
Root MSE = 5.9968 Adj R-squared = 0.1313

Source Seq. SS df MS F Prob > F

Model 287.231861 3 95.7439537 2.66 0.0659

cond 21.1878098 1 21.1878098 0.59 0.4487
status 265.913733 1 265.913733 7.39 0.0108

cond*status .130318264 1 .130318264 0.00 0.9524

Residual 1078.84812 30 35.961604

Total 1366.07998 33 41.3963631

Display 5.2

anova resp status cond cond*status, sequential

(see Display 5.3). The sums of squares corresponding to model and
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Number of obs = 34 R-squared = 0.2103
Root MSE = 5.9968 Adj R-squared = 0.1313

Source Seq. SS df MS F Prob > F

Model 287.231861 3 95.7439537 2.66 0.0659

status 284.971071 1 284.971071 7.92 0.0085
cond 2.13047169 1 2.13047169 0.06 0.8094

cond*status .130318264 1 .130318264 0.00 0.9524

Residual 1078.84812 30 35.961604

Total 1366.07998 33 41.3963631

Display 5.3

residuals are, of course, the same in both tables, as is the sum of squares
for the interaction term. What differ are the sums of squares in the
cond and status rows in the two tables. The terms of most interest
are the sum of squares of status|cond which is obtained from the ta-
ble as 265.91, and the sum of squares of cond|status which is 2.13.
These sums of squares are less than the sums of squares for status and
cond alone (284.97 and 21.19, respectively), by an amount of 19.06, a
portion of the sums of squares which cannot be uniquely attributed to
either of the variables. The associated F -tests in the two tables make it
clear that there is no interaction effect and that status|cond is signif-
icant but cond|status is not. The conclusion is that only status, i.e.,
whether the woman had been slimming for over one year, is important
in determining weight change. Provision of the manual appears to have
no discernible effect.

Results equivalent to the unique (Type III) sums of squares can be
obtained using regression:

gen cond1=cond
recode cond1 1=-1 2=1
gen status1=status
recode status1 1=-1 2=1
gen statcond = cond1*status1
regress res cond1 status1 statcond

(see Display 5.4). The p-values agree with those based on unique sums
of squares. However, these results differ from the regression used by
Stata’s anova with the option regress:

anova resp cond status cond*status, regress

(see Display 5.5) because this uses different dummy variables. The
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Source SS df MS Number of obs = 34
F( 3, 30) = 2.66

Model 287.231861 3 95.7439537 Prob > F = 0.0659
Residual 1078.84812 30 35.961604 R-squared = 0.2103

Adj R-squared = 0.1313
Total 1366.07998 33 41.3963631 Root MSE = 5.9968

resp Coef. Std. Err. t P>|t| [95% Conf. Interval]

cond1 .2726251 1.102609 0.25 0.806 -1.979204 2.524454
status1 2.998042 1.102609 2.72 0.011 .746213 5.24987

statcond -.066375 1.102609 -0.06 0.952 -2.318204 2.185454
_cons -3.960958 1.102609 -3.59 0.001 -6.212787 -1.70913

Display 5.4

Source SS df MS Number of obs = 34
F( 3, 30) = 2.66

Model 287.231861 3 95.7439537 Prob > F = 0.0659
Residual 1078.84812 30 35.961604 R-squared = 0.2103

Adj R-squared = 0.1313
Total 1366.07998 33 41.3963631 Root MSE = 5.9968

resp Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons -.7566666 2.448183 -0.31 0.759 -5.756524 4.24319
cond

1 -.4125001 2.9984 -0.14 0.891 -6.536049 5.711049
2 (dropped)

status
1 -5.863333 3.043491 -1.93 0.064 -12.07897 .3523044
2 (dropped)

cond*status
1 1 -.2655002 4.410437 -0.06 0.952 -9.272815 8.741815
1 2 (dropped)
2 1 (dropped)
2 2 (dropped)

Display 5.5
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dummy variables are equal to 1 for the levels shown on the left of
the reported coefficient and 0 otherwise, i.e., the dummy variable for
cond*status is 1 when status and cond are both 1.

A table of mean values helpful in interpreting these results can be
found using

table cond status, c(mean resp) row col f(%8.2f)

status
cond 1 2 Total

1 -7.30 -1.17 -2.97
2 -6.62 -0.76 -4.55

Total -6.83 -1.03 -3.76

The means demonstrate that experienced slimmers achieve the great-
est weight reduction.

5.4 Exercises

1. Investigate what happens to the sequential sums of squares if the
cond*status interaction term is given before the main effects cond
status in the anova command with the sequential option.

2. Use regress to reproduce the analysis of variance by coding both
condition and status as (0,1) dummy variables and creating an in-
teraction variable as the product of these dummy variables.

3. Use regress in conjunction with xi: to fit the same model without
the need to generate any dummy variables.

4. Reproduce the results of anova resp cond status cond*status,
regress using regress by making xi: omit the last category in-
stead of the first (see help xi, under ‘Summary of controlling the
omitted dummy’).
See also the Exercises in Chapters 7 and 13.
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Chapter 6

Logistic Regression:

Treatment of Lung Cancer

and Diagnosis of Heart

Attacks

6.1 Description of data

Two datasets will be analyzed in this chapter. The first dataset shown
in Table 6.1 originates from a clinical trial in which lung cancer pa-
tients were randomized to receive two different kinds of chemotherapy
(sequential therapy and alternating therapy). The outcome was classi-
fied into one of four categories: progressive disease, no change, partial
remission, or complete remission. The data were published in Holt-
brugge and Schumacher (1991) and also appear in Hand et al. (1994).
The central question is whether there is any evidence of a difference in
the outcomes achieved by the two types of therapy.

Table 6.1 Lung cancer data in tumor.dat

Progressive No Partial Complete
Therapy Sex disease change remission remission
Sequential Male 28 45 29 26

Female 4 12 5 2
Alternative Male 41 44 20 20

Female 12 7 3 1
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Table 6.2 Data in sck.dat

Maximum Infarct Infarct
CK level present absent
0 – 39 2 88

40 – 79 13 26
80 – 119 30 8

120 – 159 30 5
160 – 199 21 0
200 – 239 19 1
240 – 279 18 1
280 – 319 13 1
320 – 359 19 0
360 – 399 15 0
400 – 439 7 0
440 – 479 8 0
480 – 35 0

The second dataset to be used in this chapter arises from a study
investigating the use of serum creatine kinase (CK) levels for the diag-
nosis of myocardial infarction (heart attack). Patients admitted to a
coronary care unit because they were suspected of having had a myocar-
dial infarction within the last 48 hours had their CK levels measured on
admission and the next two mornings. A clinician who was ‘blind’ to
the CK results came to an independent ‘gold standard’ diagnosis using
electrocardiograms, clinical records, and autopsy reports. The maxi-
mum CK levels for 360 patients are given in Table 6.2 together with the
clinician’s diagnosis. The table was taken from Sackett et al. (1991)
(with permission of the publisher, Little Brown & Company), where
only the ranges of CK levels were given, not their precise values.

The main questions of interest for this second dataset are how well
CK discriminates between those with and without myocardial infarc-
tion, and how diagnostic tests perform that are based on applying dif-
ferent thresholds to CK.

6.2 The logistic regression model

In this chapter we discuss the analysis of dichotomous (or binary) re-
sponses as well as ordinal responses. Dichotomous responses arise when
the outcome is presence or absence of a characteristic or event, for ex-
ample myocardial infarction in the second dataset.

What we would like to do is to investigate the effects of a number
of explanatory variables on our binary or ordinal response variable.
This appears to be the same aim as for multiple regression discussed in
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Chapter 3, where the model for a response yi and explanatory variables
x1i to xpi can be written as

E(yi|xi) = β0 + β1x1i + · · · + βpxpi. (6.1)

Binary responses are typically coded 1 for the event of interest, such as
infarct present, and 0 for the opposite event. In this case the expected
value, πi, is simply the probability that the event of interest occurs.
This raises the first problem for applying the model above to a binary
response variable, namely that

1. the predicted probability must satisfy 0 ≤ πi ≤ 1 whereas a linear
predictor can yield any value from minus infinity to plus infinity

A second problem with the model is that

2. the observed values of yi do not follow a normal distribution with
mean πi, but rather a Bernoulli (or Binomial(1,πi)) distribution.

Consequently a new approach is needed, and this is provided by logistic
regression.

In logistic regression, the first problem is addressed by replacing the
probability πi = E(yi|xi) on the left-hand side of equation (6.1) by the
logit of the probability, giving

logit(πi) = log(πi/(1 − πi)) = β0 + β1x1i + β2x2i + · · · + βpxpi. (6.2)

The logit of the probability is simply the log of the odds of the event of
interest. Writing β and xi for the column vectors (β0, β1, · · · , βp)′ and
(1, x1i, · · · , xpi)′, respectively, the predicted probability as a function of
the linear predictor is

πi =
exp(β′xi)

1 + exp(β′xi)

=
1

1 + exp(−β′xi)
. (6.3)

When the logit takes on any real value, this probability always satisfies
0 ≤ πi ≤ 1.

The second problem relates to the estimation procedure. Whereas
maximum likelihood estimation in conventional linear regression leads
to least squares, this is not the case in logistic regression. In logistic
regression the log likelihood is maximized numerically using an itera-
tive algorithm. For full details of logistic regression, see for example
Collett (2002), Agresti (1996), and Long and Freese (2003). (The last
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reference provides a comprehensive discussion of regression models for
categorical variables using Stata.) Logistic regression can be general-
ized to the situation where the response variable has more than two
ordered response categories. In the latent response formulation, we
think of the ordered categories as representing successive intervals of
an underlying latent (unobserved) continuous response. If there are
S response categories labeled a1, · · · , aS, the relationship between the
observed and latent response can be formulated as a threshold model:

yi =




a1 if y∗
i ≤ κ1

a2 if κ1 <y∗
i ≤ κ2

...
...

...
aS if κS−1 <y∗

i ,

where κs, s = 1, · · · , S − 1 are threshold or cut-point parameters. The
latent response is modeled as a linear regression

y∗
i = β′xi + εi,

where εi has a logistic distribution,

Pr(εi < X) =
exp(X)

1 + exp(X)
.

Note that we could not simultaneously estimate the constant in the
model for y∗

i and all threshold parameters since we could increase the
constant and all thresholds by the same amount without changing the
model. In Stata, the constant is therefore set to zero for identification.
The latent response and threshold model imply a simple cumulative
model for the observed responses. The cumulative probability γis that
the response yi takes on a value up to and including as becomes

γis = Pr(y∗
i ≤ κs) = Pr(y∗

i − β′xi ≤ κs − β′xi)

=
exp(κs − β′xi)

1 + exp(κs − β′xi)
, s = 1, · · · , S − 1. (6.4)

Note that γiS = 1. This cumulative ordinal regression model is also
called the proportional odds model because the log odds that yi > as

are

log
(

1 − γis

γis

)
= β′xi − κs (6.5)

© 2004 by CRC Press LLC 



so that the log odds ratio for two units i and j is β′(xi − xj) which
is independent of s. Therefore, exp(βk) represents the odds ratio that
y > as for any s when xk increases by one unit if all other covariates
remain the same.

In binary logistic regression for dichotomous responses, a1 = 0, a2 =
1, κ1 = 0, and exp(βk) is the odds ratio that y = 1 when xk increases
by one unit and all other covariates remain the same. Note that a
different identifying restriction is used than for ordinal responses: the
threshold is set to zero instead of the constant in the model for y∗

i .
Note that the probit and ordinal probit models correspond to logistic

and ordinal logistic regression models with the cumulative distribution
function in (6.4) replaced by the standard normal cumulative distri-
bution function. More information on models for ordinal data can be
found in Agresti (1996) and Long and Freese (2003).

6.3 Analysis using Stata

6.3.1 Chemotherapy treatment of lung cancer

Assume the ASCII file tumor.dat contains the four by four matrix
of frequencies shown in Table 6.1. First read the data and generate
variables for therapy and sex using the egen function seq():

infile fr1 fr2 fr3 fr4 using tumor.dat
egen therapy=seq(), from(0) to(1) block(2)
egen sex=seq(),from(1) to(2) by(therapy)
label define t 0 seq 1 alt
label values therapy t
label define s 1 male 2 female
label values sex s

block(2) causes the number in the sequence (from 0 to 1) to be re-
peated in blocks of two, whereas by(therapy) causes the sequence to
start from the lower limit every time the value of therapy changes.

We next reshape the data to long, placing the four levels of the out-
come into a variable outc, and expand the dataset by replicating each
observation freq times so that we have one observation per subject:

reshape long fr, i(therapy sex) j(outc)
expand fr

We can check that the data conversion is correct by tabulating these
data as in Table 6.1:

table sex outc, contents(freq) by(therapy)

giving the table in Display 6.1.
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therapy outc
and sex 1 2 3 4

seq
male 28 45 29 26

female 4 12 5 2

alt
male 41 44 20 20

female 12 7 3 1

Display 6.1

To be able to carry out ordinary logistic regression, we need to
dichotomize the outcome, for example, by considering partial and com-
plete remission to be an improvement and the other categories to be no
improvement. The new outcome variable may be generated as follows:

gen improve=outc
recode improve 1/2=0 3/4=1

or using

gen improve = outc>2

The command logit for logistic regression behaves the same way as
regress and all other estimation commands. For example, automatic
selection procedures can be carried out using sw and post-estimation
commands such as testparm and predict are available. First, include
therapy as the only explanatory variable:

logit improve therapy

(see Display 6.2). The algorithm takes three iterations to converge. The
coefficient of therapy represents the difference in the log odds (of an
improvement) between the alternating and sequential therapies. The
negative value indicates that sequential therapy is superior to alternat-
ing therapy. The p-value of the coefficient is 0.041 in the table. This
was derived from the Wald-statistic, z, which is equal to the coefficient
divided by its asymptotic standard error (Std. Err.) as derived from
the Hessian matrix of the log likelihood function, evaluated at the max-
imum likelihood solution. This p-value is less reliable than the p-value
based on the likelihood ratio between the model including only the con-
stant and the current model, which is given at the top of the output
(chi2(1)=4.21). Here, minus twice the log of the likelihood ratio is
equal to 4.21 which has an approximate χ2-distribution if the simple
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Iteration 0: log likelihood = -194.40888
Iteration 1: log likelihood = -192.30753
Iteration 2: log likelihood = -192.30471

Logit estimates Number of obs = 299
LR chi2(1) = 4.21
Prob > chi2 = 0.0402

Log likelihood = -192.30471 Pseudo R2 = 0.0108

improve Coef. Std. Err. z P>|z| [95% Conf. Interval]

therapy -.4986993 .2443508 -2.04 0.041 -.977618 -.0197805
_cons -.361502 .1654236 -2.19 0.029 -.6857263 -.0372777

Display 6.2

model is correct with one degree of freedom (because there is one addi-
tional parameter) giving a p-value of 0.040, very similar to that based
on the Wald test. The coefficient of therapy represents the difference
in log odds between the therapies and is not easy to interpret apart
from the sign. Exponentiating the coefficient gives the odds ratio and
exponentiating the 95% confidence limits gives the confidence interval
for the odds ratio. Fortunately, the command logistic may be used
to obtain the required odds ratio and its confidence interval directly
(alternatively, we could use the or option in the logit command):

logistic improve therapy

(see Display 6.3). The standard error now represents the approximate

Logistic regression Number of obs = 299
LR chi2(1) = 4.21
Prob > chi2 = 0.0402

Log likelihood = -192.30471 Pseudo R2 = 0.0108

improve Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

therapy .6073201 .1483991 -2.04 0.041 .3762061 .9804138

Display 6.3

standard error of the odds ratio (calculated using the delta method, see
e.g., Agresti, 2002). Since the sampling distribution of the odds ratio
is not well approximated by a normal distribution, the Wald statistic
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and confidence interval are derived using the log odds and its standard
error. To test whether the inclusion of sex in the model significantly
increases the likelihood, the current likelihood (and all the estimates)
can be saved using

estimates store model1

Including sex

logistic improve therapy sex

gives the output shown in Display 6.4. The p-value of sex based on

Logistic regression Number of obs = 299
LR chi2(2) = 7.55
Prob > chi2 = 0.0229

Log likelihood = -190.63171 Pseudo R2 = 0.0194

improve Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

therapy .6051969 .1486907 -2.04 0.041 .3739084 .9795537
sex .5197993 .1930918 -1.76 0.078 .2509785 1.076551

Display 6.4

the Wald-statistic is 0.078, and a p-value for the likelihood ratio test is
obtained using

lrtest model1 .

likelihood-ratio test LR chi2(1) = 3.35
(Assumption: model1 nested in .) Prob > chi2 = 0.0674

which is not very different from the value of 0.078. In the lrtest
command ‘.’ refers to the current model and model1 is the model ex-
cluding sex which was previously stored using estimates store. We
could have specified the models in the reverse order as Stata assumes
that the model with the lower log likelihood is nested within the other
model. Note that it is essential that both models compared in the
likelihood ratio test be based on the same sample. If sex had missing
values, the number of observations contributing to the model including
sex could be lower than for the nested model excluding sex. In this
case, we would have to restrict esimation of the nested model to the
‘estimation sample’ of the full model. If the full model has been es-
timated first, this can be achieved using logistic improve therapy
if e(sample).
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Retaining the variable sex in the model, the predicted probabilities
can be obtained using

predict prob

and the four different predicted probabilities may be compared with
the observed proportions as follows:

table sex, contents(mean prob mean improve freq) /*
*/ by(therapy)

(see Display 6.5). The agreement is good, so there appears to be no

therapy
and sex mean(prob) mean(improve) Freq.

seq
male .4332747 .4296875 128

female .2843846 .3043478 23

alt
male .3163268 .32 125

female .1938763 .173913 23

Display 6.5

strong interaction between sex and type of therapy. (We could test
for an interaction between sex and therapy by using xi: logistic
improve i.therapy*i.sex.) Residuals are not very informative for
these data because there are only four different predicted probabilities.

We now fit the proportional odds model using the full ordinal re-
sponse variable outc:

ologit outc therapy sex, table

The results are shown in Display 6.6. Both therapy and sex are more
significant than before, as might be expected because information was
lost in dichotomizing the outcome. The coefficients represent the log
odds ratios of being in complete remission versus being at best in partial
remission; or equivalently, the log odds ratio of being at least in partial
remission rather than having progressive disease or no change. The
option table has produced the last part of the output to remind us
how the proportional odds model is defined. We could calculate the
probability that a male (sex=1) who is receiving sequential therapy
(therapy=0) will be in complete remission (outc=4) using 1− γ3 (see
equation (6.4)):
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Iteration 0: log likelihood = -399.98398
Iteration 1: log likelihood = -394.53988
Iteration 2: log likelihood = -394.52832

Ordered logit estimates Number of obs = 299
LR chi2(2) = 10.91
Prob > chi2 = 0.0043

Log likelihood = -394.52832 Pseudo R2 = 0.0136

outc Coef. Std. Err. z P>|z| [95% Conf. Interval]

therapy -.580685 .2121432 -2.74 0.006 -.9964781 -.164892
sex -.5413938 .2871764 -1.89 0.059 -1.104249 .0214616

_cut1 -1.859437 .3828641 (Ancillary parameters)
_cut2 -.2921603 .3672626
_cut3 .758662 .3741486

outc Probability Observed

1 Pr( xb+u<_cut1) 0.2843
2 Pr(_cut1<xb+u<_cut2) 0.3612
3 Pr(_cut2<xb+u<_cut3) 0.1906
4 Pr(_cut3<xb+u) 0.1639

Display 6.6

display 1-1/(1+exp(-0.5413938-0.758662))

.21415563

However, a much quicker way of computing the predicted probabilities
for all four responses and all combinations of explanatory variables is
to use the command predict:

predict p1 p2 p3 p4

and to tabulate the results as follows:

table sex, contents(mean p1 mean p2 mean p3 mean p4) /*
*/ by(therapy)

giving the table in Display 6.7.

6.3.2 Diagnosis of heart attacks

The data in sck.dat are read in using

infile ck pres abs using sck.dat
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therapy
and sex mean(p1) mean(p2) mean(p3) mean(p4)

seq
male .2111441 .3508438 .2238566 .2141556

female .3150425 .3729235 .175154 .1368799

alt
male .3235821 .3727556 .1713585 .1323038

female .4511651 .346427 .1209076 .0815003

Display 6.7

Each observation represents all subjects with maximum creatine
kinase values in the same range. The total number of subjects is
pres+abs, calculated using

gen tot=pres+abs

and the number of subjects with the disease is pres. The probability
of pres ‘successes’ in tot trials is binomial with ‘denominator’ tot and
probability πi, Binomial(tot, πi). The programs logit and logistic
are for data where each observation represents a single Bernoulli trial,
with binomial ‘denominator’ equal to 1, Binomial(1, πi). Another com-
mand, blogit, can be used to analyze the ‘grouped’ data with ‘denom-
inators’ tot as considered here:

blogit pres tot ck

(see Display 6.8). There is a very significant association between CK

Logit estimates Number of obs = 360
LR chi2(1) = 283.15
Prob > chi2 = 0.0000

Log likelihood = -93.886407 Pseudo R2 = 0.6013

_outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

ck .0351044 .0040812 8.60 0.000 .0271053 .0431035
_cons -2.326272 .2993611 -7.77 0.000 -2.913009 -1.739535

Display 6.8

and the probability of infarct. We now need to investigate whether

© 2004 by CRC Press LLC 



it is reasonable to assume that the log odds depends linearly on CK.
Therefore, we plot the observed proportions and predicted probabilities
as follows:

gen prop = pres/tot
predict pred, p
label variable prop "observed"
label variable pred "predicted"
twoway (line pred ck) (scatter prop ck), /*
*/ ytitle("Probability")

The predict command gives predicted counts by default and there-
fore the p option was used to obtain predicted probabilities instead. In
the resulting graph in Figure 6.1, the curve fits the data reasonably
well, the largest discrepancy being at CK=280. However, the curve for
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Figure 6.1: Probability of infarct as a function of creatine Kinase levels.

the predicted probabilities is not smooth. Using mspline instead of
line produces a smooth curve, but a more faithful smooth curve can
be obtained using the graph twoway function command as follows:

twoway (function y=1/(1+exp(-_b[_cons]-_b[ck]*x)), /*
*/ range(0 480)) (scatter prop ck), ytitle("Probability")
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Here we are using the regression coefficients b[ cons] and b[ck]
to calculate the predicted probability as a function of some hypo-
thetical variable x varying in the range from 0 to 480. This im-
proved graph is shown in Figure 6.2. Note that we could also use
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Figure 6.2: Smoother version of Figure 6.1.

the invlogit() function to calculate the inverse logit, i.e. function
y = invlogit( b[ cons]+ b[ck]*x).

We will now plot some residuals and then consider the performance
of CK as a diagnostic tool, defining the test as positive if CK exceeds a
certain threshold. In particular, we will consider the sensitivity (prob-
ability of a positive test result if the disease is present) and specificity
(probability of a negative test result if the disease is absent) for different
thresholds. There are some useful post-estimation commands available
for these purposes for use after logistic that are not available after
blogit. We therefore transform the data into the form required for
logistic, i.e., one observation per Bernoulli trial with outcome infct
equal to 0 or 1 so that the number of ones per CK level equals pres:

expand tot
bysort ck: gen infct=_n<=pres
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We can reproduce the results of blogit using logit:

logit infct ck, nolog

(see Display 6.9) where the nolog option was used to stop the iteration

Logit estimates Number of obs = 360
LR chi2(1) = 283.15
Prob > chi2 = 0.0000

Log likelihood = -93.886407 Pseudo R2 = 0.6013

infct Coef. Std. Err. z P>|z| [95% Conf. Interval]

ck .0351044 .0040812 8.60 0.000 .0271053 .0431035
_cons -2.326272 .2993611 -7.77 0.000 -2.913009 -1.739535

Display 6.9

history from being given.
One useful type of residual is the standardized Pearson residual

for each ‘covariate pattern’, i.e., for each combination of values in the
covariates (here for each value of CK). These residuals may be obtained
and plotted as follows:

predict resi, rstandard
twoway scatter resi ck, mlabel(ck)

The graph is shown in Figure 6.3. There are several large outliers. The
largest outlier at CK=280 is due to one subject out of 14 not having
had an infarct although the predicted probability of an infarct is almost
1.

We now determine the accuracy of the diagnostic test. A classifi-
cation table of the predicted diagnosis (using a cut-off of the predicted
probability of 0.5) versus the true diagnosis may be obtained using

lstat

giving the table shown in Display 6.10. Both the sensitivity and the
specificity are relatively high. These characteristics are generally as-
sumed to generalize to other populations whereas the positive and nega-
tive predictive values (probabilities of the disease being present/absent
if the test is positive/negative) depend on the prevalence (or prior prob-
ability) of the condition (see for example Sackett et al., 1991).

The use of other probability cut-offs could be investigated using the
option cutoff(#) in the above command or using the commands lroc
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Figure 6.3: Standardized Pearson residuals vs. creatine kinase level.

Logistic model for infct

True
Classified D ~D Total

+ 215 16 231
- 15 114 129

Total 230 130 360

Classified + if predicted Pr(D) >= .5
True D defined as infct != 0

Sensitivity Pr( +| D) 93.48%
Specificity Pr( -|~D) 87.69%
Positive predictive value Pr( D| +) 93.07%
Negative predictive value Pr(~D| -) 88.37%

False + rate for true ~D Pr( +|~D) 12.31%
False - rate for true D Pr( -| D) 6.52%
False + rate for classified + Pr(~D| +) 6.93%
False - rate for classified - Pr( D| -) 11.63%

Correctly classified 91.39%

Display 6.10
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to plot a ROC-curve (specificity vs. sensitivity for different cut-offs) or
lsens to plot sensitivity and specificity against cut-off (see exercises).

The above classification table may be misleading because we are
testing the model on the same sample that was used to derive it.
An alternative approach is to compute predicted probabilities for each
observation from a model fitted to the remaining observations. This
method, called ‘leave one out’ method or jackknifing (see Lachenbruch
and Mickey, 1986), can be carried out relatively easily for our data be-
cause we only have a small number of covariate and response patterns.
Instead of looping through all observations, excluding each observation
in the logistic regression command and computing that observation’s
predicted probability, we can loop through a subset of observations
representing all combinations of covariates and responses found in the
data.

First, label each unique covariate pattern consecutively in a variable
num using predict with the number option:

predict num, number

Now generate first, equal to one for the first observation in each
group of unique covariate and response patterns and zero otherwise:

bysort num infct: gen first=_n==1

(We could also have used egen first = tag(num infct).) Now de-
fine grp, equal to the cumulative sum of first, obtained using the
function sum(). This variable numbers the groups of unique covariate
and response patterns consecutively:

gen grp=sum(first)

(An alternative way of generating grp without having to first create
first would be to use the command egen grp=group(num infct).)
Now determine the number of unique combinations of CK levels and
infarct status:

summ grp

Variable Obs Mean Std. Dev. Min Max

grp 360 8.658333 6.625051 1 20

As there are 20 groups, we need to run logistic 20 times (for each
value of grp), excluding one observation from grp to derive the model
for predicting the probability for all observations in grp.

First generate a variable, nxt, that consecutively labels the 20 ob-
servations to be excluded in turn:

gen nxt = first*grp

© 2004 by CRC Press LLC 



Now build up a variable prp of predicted probabilities as follows:

gen prp=0
forvalues n= 1/20 {

logistic infct ck if nxt~=`n´
predict p
replace prp=p if grp==`n´
drop p

}

The purpose of these four commands inside the loop is to
1. derive the model excluding one observation from grp,
2. obtain the predicted probabilities p (predict produces results for

the whole sample, not just the estimation sample),
3. set prp to the predicted probability for all observations in grp, and
4. drop p so that it can be defined again in the next iteration.

The classification table for the jackknifed probabilities can be ob-
tained using

gen class= prp>=0.5
tab class infct

infct
class 0 1 Total

0 114 15 129
1 16 215 231

Total 130 230 360

giving the same result as before, although this is not generally the case.

6.4 Exercises

1. Read in the data without using the expand command, and repro-
duce the result of ordinal logistic regressions by using the appropri-
ate weights.

2. Carry out significance tests for an association between depress and
life for the data described in Chapter 2 using
a. ordinal logistic regression with depress as dependent variable
b. logistic regression with life as dependent variable.

3. Use sw together with logistic to find a model for predicting life
using the data from Chapter 2 with different sets of candidate vari-
ables (see Chapter 3).
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4. Produce graphs similar to those in Figures 6.1 and 6.2 using a probit
model instead of a logit (see help for bprobit).

5. Explore the use of lstat, cutoff(#), lroc, and lsens for the
diagnosis data.
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Chapter 7

Generalized Linear Models:

Australian School Children

7.1 Description of data

This chapter reanalyzes a number of datasets discussed in previous
chapters and in addition, describes the analysis of a new dataset given
in Aitkin (1978). These data come from a sociological study of Aus-
tralian aboriginal and white children. The sample included children
from four age groups (final year in primary school and first three years
in secondary school) who were classified as slow or average learners.
The number of days absent from school during the school year was
recorded for each child. The data are given in Table 7.1. The variables
are as follows:

� eth: ethnic group (A=aboriginal, N=white)

� sex: sex (M=male, F=female)

� age: class in school (F0, F1, F2, F3)

� lrn: average or slow learner (SL=slow learner, AL=average
learner)

� days: number of days absent from school in one year

One aim of the analysis is to investigate ethnic differences in the mean
number of days absent from school while controlling for the other po-
tential predictors sex, age, and lrn.
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7.2 Generalized linear models

Previous chapters have described linear (Chapter 3) and logistic regres-
sion (Chapter 6). In this chapter, we will describe a more general class
of models, called generalized linear models, of which linear regression
and logistic regression are special cases.

Both linear and logistic regression involve a linear combination of
the explanatory variables, called the linear predictor, of the form

ηi = β0 + βx1i + βx2i + · · · + βxpi

= βT xi. (7.1)

In both types of regression, the linear predictor determines the ex-
pectation µi of the response variable. In linear regression, where the
response is continuous, µi is directly equated with the linear predictor.
This is not advisable when the response is dichotomous because in this
case the expectation is a probability which must satisfy 0 ≤ µi ≤ 1.
In logistic regression, the linear predictor is therefore equated with a
function of µi, the logit, ηi = log(µi/(1 − µi)). In generalized linear
models, the linear predictor may be equated with any of a number of
different functions g(µi) of µi, called link functions; that is,

ηi = g(µi). (7.2)

In linear regression, the probability distribution of the response vari-
able is assumed to be normal with mean µi. In logistic regression a
binomial distribution is assumed with probability parameter µi. Both
the normal and binomial distributions come from the same family of
distributions, called the exponential family,

f(yi; θi, φ) = exp{(yiθi − b(θi))/a(φ) + c(yi, φ)}. (7.3)

For example, for the normal distribution,

f(yi; θi, φ) =
1√

(2πσ2)
exp{−(yi − µi)2/2σ2}

= exp{(yiµi − µ2
i /2)/σ

2 − 1
2
(y2

i /σ
2 + log(2πσ2))} (7.4)

so that θi = µi, b(θi) = θ2
i /2, φ = σ2, and a(φ) = φ.

The parameter θi, a function of µi, is called the canonical link. The
canonical link is frequently chosen as the link function (and is the
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Table 7.1 Data in quine.dta presented in four columns to save space. (Taken from Aitkin
(1978) with permission of the Royal Statistical Society.)

eth sex age lrn days eth sex age lrn days eth sex age lrn days eth sex age lrn days
A M F0 SL 2 A M F0 SL 11 A M F0 SL 14 A M F0 AL 5
A M F0 AL 5 A M F0 AL 13 A M F0 AL 20 A M F0 AL 22
A M F1 SL 6 A M F1 SL 6 A M F1 SL 15 A M F1 AL 7
A M F1 AL 14 A M F2 SL 6 A M F2 SL 32 A M F2 SL 53
A M F2 SL 57 A M F2 AL 14 A M F2 AL 16 A M F2 AL 16
A M F2 AL 17 A M F2 AL 40 A M F2 AL 43 A M F2 AL 46
A M F3 AL 8 A M F3 AL 23 A M F3 AL 23 A M F3 AL 28
A M F3 AL 34 A M F3 AL 36 A M F3 AL 38 A F F0 SL 3
A F F0 AL 5 A F F0 AL 11 A F F0 AL 24 A F F0 AL 45
A F F1 SL 5 A F F1 SL 6 A F F1 SL 6 A F F1 SL 9
A F F1 SL 13 A F F1 SL 23 A F F1 SL 25 A F F1 SL 32
A F F1 SL 53 A F F1 SL 54 A F F1 AL 5 A F F1 AL 5
A F F1 AL 11 A F F1 AL 17 A F F1 AL 19 A F F2 SL 8
A F F2 SL 13 A F F2 SL 14 A F F2 SL 20 A F F2 SL 47
A F F2 SL 48 A F F2 SL 60 A F F2 SL 81 A F F2 AL 2
A F F3 AL 0 A F F3 AL 2 A F F3 AL 3 A F F3 AL 5
A F F3 AL 10 A F F3 AL 14 A F F3 AL 21 A F F3 AL 36
A F F3 AL 40 N M F0 SL 6 N M F0 SL 17 N M F0 SL 67
N M F0 AL 0 N M F0 AL 0 N M F0 AL 2 N M F0 AL 7
N M F0 AL 11 N M F0 AL 12 N M F1 SL 0 N M F1 SL 0
N M F1 SL 5 N M F1 SL 5 N M F1 SL 5 N M F1 SL 11
N M F1 SL 17 N M F1 AL 3 N M F1 AL 4 N M F2 SL 22
N M F2 SL 30 N M F2 SL 36 N M F2 AL 8 N M F2 AL 0
N M F2 AL 1 N M F2 AL 5 N M F2 AL 7 N M F2 AL 16
N M F2 AL 27 N M F3 AL 0 N M F3 AL 30 N M F3 AL 10
N M F3 AL 14 N M F3 AL 27 N M F3 AL 41 N M F3 AL 69
N F F0 SL 25 N F F0 AL 10 N F F0 AL 11 N F F0 AL 20
N F F0 AL 33 N F F1 SL 5 N F F1 SL 7 N F F1 SL 0
N F F1 SL 1 N F F1 SL 5 N F F1 SL 5 N F F1 SL 5
N F F1 SL 5 N F F1 SL 7 N F F1 SL 11 N F F1 SL 15
N F F1 AL 5 N F F1 AL 14 N F F1 AL 6 N F F1 AL 6
N F F1 AL 7 N F F1 AL 28 N F F2 SL 0 N F F2 SL 5
N F F2 SL 14 N F F2 SL 2 N F F2 SL 2 N F F2 SL 3
N F F2 SL 8 N F F2 SL 10 N F F2 SL 12 N F F2 AL 1
N F F3 AL 1 N F F3 AL 9 N F F3 AL 22 N F F3 AL 3
N F F3 AL 3 N F F3 AL 5 N F F3 AL 15 N F F3 AL 18
N F F3 AL 22 N F F3 AL 37
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default link in the Stata command for fitting generalized linear models,
glm), although the canonical link is not necessarily more appropriate
than any other link. Table 7.2 lists some of the most common distri-
butions and their canonical link functions used in generalized linear
models.

Table 7.2 Probability distributions and their canonical
link functions

Variance Dispersion Link
Distribution function parameter function g(µ) = θ(µ)

Normal 1 σ2 identity µ
Binomial µ(1 − µ) 1 logit log(µ/(1 − µ))
Poisson µ 1 log ln(µ)

Gamma µ2 ν−1 reciprocal 1/µ

The conditional mean and variance of Yi are given by

E(Yi|xi) = b′(θi) = µi (7.5)

and

var(Yi|xi) = b′′(θi)a(φ) = V (µi)a(φ) (7.6)

where b′(θi) and b′′(θi) denote the first and second derivatives of b(·)
evaluated at θi, and the variance function V (µi) is obtained by express-
ing b′′(θi) as a function of µi. It can be seen from (7.4) that the variance
for the normal distribution is simply σ2 regardless of the value of the
mean µi, i.e., the variance function is 1.

The data on Australian school children will be analyzed by assum-
ing a Poisson distribution for the number of days absent from school.
The Poisson distribution is the appropriate distribution of the number
of events observed over a period of time, if these events occur inde-
pendently in continuous time at a constant instantaneous probability
rate (or incidence rate); see for example Clayton and Hills (1993). The
Poisson distribution is given by

f(yi;µi) = µyi

i e−µi/yi!, yi = 0, 1, 2, · · · . (7.7)

Taking the logarithm and summing over observations, the log like-
lihood is

l(µ;y) =
∑

i

{(yi ln µi − µi) − ln(yi!)} (7.8)
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so that θi = ln µi, b(θi) = exp(θi), φ = 1, a(φ) = 1, and var(Yi|xi) =
exp(θi) = µi. Therefore, the variance of the Poisson distribution is
not constant, but equal to the mean. Unlike the normal distribution,
the Poisson distribution has no separate parameter for the variance
and the same is true of the binomial distribution. Table 7.2 shows the
variance functions and dispersion parameters for some commonly used
probability distributions.

7.2.1 Model selection and measure of fit

Lack of fit may be expressed by the deviance, which is minus twice the
difference between the maximized log likelihood of the model and the
maximum likelihood achievable, i.e., the maximized likelihood of the
full or saturated model. For the normal distribution, the deviance is
simply the residual sum of squares. Another measure of lack of fit is
the generalized Pearson X2,

X2 =
∑

i

(yi − µ̂i)2/V (µ̂i), (7.9)

which, for the Poisson distribution, is just the familiar Pearson chi-
squared statistic for two-way cross-tabulations (since V (µ̂i) = µ̂i).
Both the deviance and Pearson X2 have χ2 distributions when the
sample size tends to infinity. When the dispersion parameter φ is fixed
(not estimated), an analysis of deviance may be used for comparing
nested models. To test the null hypothesis that the restrictions leading
to the nested model are true, the difference in deviance between two
models is compared with the χ2 distribution with degrees of freedom
equal to the difference in model degrees of freedom.

The Pearson and deviance residuals are defined as the (signed)
square roots of the contributions of the individual observations to the
Pearson X2 and deviance respectively. These residuals may be used to
assess the appropriateness of the link and variance functions.

A relatively common phenomenon with count data is overdisper-
sion, i.e., the variance is greater than that of the assumed distribution
(binomial with denominator greater than 1 or Poisson). This overdis-
persion may be due to extra variability in the parameter µi which has
not been completely explained by the covariates. One way of address-
ing the problem is to allow µi to vary randomly according to some
(prior) distribution and to assume that conditional on µi, the response
variable follows the binomial (or Poisson) distribution. Such models
are called random effects models; see also Chapter 9.

A more pragmatic way of accommodating overdispersion in the
model is to assume that the variance is proportional to the variance
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function, but to estimate the dispersion or scale parameter φ rather
than assuming the value 1 appropriate for the distributions. For the
Poisson distribution, the variance is modeled as

var(Y |xi) = φµi (7.10)

where φ is estimated from the Deviance or Pearson X2. (This is analo-
gous to the estimation of the residual variance in linear regresion mod-
els from the residual sums of squares.) This parameter is then used to
scale the estimated standard errors of the regression coefficients. This
approach of assuming a variance function that does not correspond to
any probability distribution is an example of the quasi-likelihood ap-
proach. If the variance is not proportional to the variance function,
robust standard errors can be used as described in the next section.
See McCullagh and Nelder (1989) and Hardin and Hilbe (2001) for
more details on generalized linear models.

7.2.2 Robust standard errors of parameter estimates

A very useful feature of Stata is that robust standard errors of esti-
mated parameters can be obtained for most estimation commands. In
maximum likelihood estimation, the standard errors of the estimated
parameters are derived from the Hessian (matrix of second derivatives
with respect to the parameters) of the log likelihood. However, these
standard errors are correct only if the likelihood is the true likelihood
of the data. If this assumption is not correct, for instance due to omis-
sion of covariates, misspecification of the link function or probability
distribution function, we can still use robust estimates of the standard
errors known as the Huber, White, or sandwich variance estimates (for
details, see Binder, 1983).

In the description of the robust variance estimator in the Stata
User’s Guide (Section 23.14), it is pointed out that the use of robust
standard errors implies a less ambitious interpretation of the parame-
ter estimates and their standard errors than a model-based approach.
Instead of assuming that the model is ‘true’ and attempting to esti-
mate ‘true’ parameters, we just consider the properties of the estima-
tor (whatever it may mean) under repeated sampling and define the
standard error as its sampling standard deviation (see also the FAQ by
Sribney, 1998).

Another approach to estimating the standard errors without mak-
ing any distributional assumptions is bootstrapping (Efron and Tibshi-
rani, 1993). If we could obtain repeated samples from the population
(from which our data were sampled), we could obtain an empirical
sampling distribution of the parameter estimates. In Monte Carlo sim-
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ulation, the required samples are drawn from the assumed distribu-
tion. In bootstrapping, the sample is resampled ‘to approximate what
would happen if the population were sampled’ (Manly, 1997). Boot-
strapping works as follows. Take a random sample of n observations (n
is the sample size), with replacement, and estimate the regression coef-
ficients. Repeat this a number of times to obtain a sample of estimates.
From the resulting sample of parameter estimates, obtain the empiri-
cal variance-covariance matrix of the parameter estimates. Confidence
intervals may be constructed using the estimated variance or directly
from the appropriate centiles of the empirical distribution of parameter
estimates. See Manly (1997) and Efron and Tibshirani (1993) for more
information on the bootstrap.

7.3 Analysis using Stata

The glm command can be used to fit generalized linear models. The
syntax is analogous to logistic and regress except that the options
family() and link() are used to specify the probability distribution
of the response and the link function, respectively. We first analyze
data from the previous chapter to show how linear regression, ANOVA
and logistic regression are performed using glm and then move on to
the data on Australian school children.

7.3.1 Linear regression

First, we show how linear regression can be carried out using glm. In
Chapter 3, the U.S. air-pollution data were read in using the instruc-
tions

infile str10 town so2 temp manuf pop wind precip days /*
*/ using usair.dat

drop if town=="Chicago"

and now we regress so2 on a number of variables using

glm so2 temp pop wind precip, fam(gauss) link(id)

(see Display 7.1). The results are identical to those of the regression
analysis. The scale parameter given on the right-hand side above the
regression table represents the residual variance given under Residual
MS in the analysis of variance table of the regression analysis in Chap-
ter 3. We can estimate robust standard errors using the robust option

glm so2 temp pop wind precip, fam(gauss) link(id) robust

(see Display 7.2) giving slightly different standard errors, suggesting
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Iteration 0: log likelihood = -167.48483

Generalized linear models No. of obs = 40
Optimization : ML: Newton-Raphson Residual df = 35

Scale parameter = 290.0043
Deviance = 10150.15199 (1/df) Deviance = 290.0043
Pearson = 10150.15199 (1/df) Pearson = 290.0043

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]
Standard errors : OIM

Log likelihood = -167.4848314 AIC = 8.624242
BIC = 10021.04121

so2 Coef. Std. Err. z P>|z| [95% Conf. Interval]

temp -1.810123 .4404001 -4.11 0.000 -2.673292 -.9469549
pop .0113089 .0074091 1.53 0.127 -.0032126 .0258304
wind -3.085284 2.096471 -1.47 0.141 -7.194292 1.023723

precip .5660172 .2508601 2.26 0.024 .0743404 1.057694
_cons 131.3386 34.32034 3.83 0.000 64.07195 198.6052

Display 7.1

Iteration 0: log pseudo-likelihood = -167.48483

Generalized linear models No. of obs = 40
Optimization : ML: Newton-Raphson Residual df = 35

Scale parameter = 290.0043
Deviance = 10150.15199 (1/df) Deviance = 290.0043
Pearson = 10150.15199 (1/df) Pearson = 290.0043

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]
Standard errors : Sandwich

Log pseudo-likelihood = -167.4848314 AIC = 8.624242
BIC = 10021.04121

Robust
so2 Coef. Std. Err. z P>|z| [95% Conf. Interval]

temp -1.810123 .3280436 -5.52 0.000 -2.453077 -1.16717
pop .0113089 .0079634 1.42 0.156 -.0042992 .0269169
wind -3.085284 1.698542 -1.82 0.069 -6.414366 .2437966

precip .5660172 .1818484 3.11 0.002 .2096009 .9224335
_cons 131.3386 18.21993 7.21 0.000 95.62816 167.049

Display 7.2
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that some assumptions may not be entirely satisfied.

7.3.2 ANOVA

We now show how an analysis of variance model can be fitted using
glm, using the slimming clinic example of Chapter 5. The data are read
using

infile cond status resp using slim.dat

and the full, saturated model may be obtained using

xi: glm resp i.cond*i.status, fam(gauss) link(id)

(see Display 7.3). This result is identical to that obtained using the

i.cond _Icond_1-2 (naturally coded; _Icond_1 omitted)
i.status _Istatus_1-2 (naturally coded; _Istatus_1 omitted)
i.cond*i.status _IconXsta_#_# (coded as above)

Iteration 0: log likelihood = -107.01782

Generalized linear models No. of obs = 34
Optimization : ML: Newton-Raphson Residual df = 30

Scale parameter = 35.9616
Deviance = 1078.848121 (1/df) Deviance = 35.9616
Pearson = 1078.848121 (1/df) Pearson = 35.9616

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]
Standard errors : OIM

Log likelihood = -107.0178176 AIC = 6.53046
BIC = 973.0573056

resp Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Icond_2 .6780002 3.234433 0.21 0.834 -5.661372 7.017373
_Istatus_2 6.128834 3.19204 1.92 0.055 -.1274504 12.38512

_IconXsta_~2 -.2655002 4.410437 -0.06 0.952 -8.909799 8.378798
_cons -7.298 2.68185 -2.72 0.007 -12.55433 -2.04167

Display 7.3

command

xi: regress resp i.cond*i.status

(see exercises in Chapter 5).
We can obtain the F -statistics for the interaction term by saving

the deviance of the above model (residual sum of squares) in a local
macro and refitting the model with the interaction removed:
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local dev0=e(deviance)

xi: glm resp i.cond i.status, fam(gauss) link(id)

(see Display 7.4). The increase in deviance caused by the removal of

i.cond _Icond_1-2 (naturally coded; _Icond_1 omitted)
i.status _Istatus_1-2 (naturally coded; _Istatus_1 omitted)

Iteration 0: log likelihood = -107.01987

Generalized linear models No. of obs = 34
Optimization : ML: Newton-Raphson Residual df = 31

Scale parameter = 34.80576
Deviance = 1078.97844 (1/df) Deviance = 34.80576
Pearson = 1078.97844 (1/df) Pearson = 34.80576

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]
Standard errors : OIM

Log likelihood = -107.0198709 AIC = 6.471757
BIC = 969.6612634

resp Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Icond_2 .5352102 2.163277 0.25 0.805 -3.704734 4.775154
_Istatus_2 5.989762 2.167029 2.76 0.006 1.742463 10.23706

_cons -7.199832 2.094584 -3.44 0.001 -11.30514 -3.094524

Display 7.4

the interaction term represents the sum of squares of the interaction
term after eliminating the main effects:

local dev1=e(deviance)
local ddev=`dev1´-`dev0´
display `ddev´

.13031826

and the F -statistic is simply the mean sum of squares of the interaction
term after eliminating the main effects divided by the residual mean
square of the full model. The numerator and denominator degrees of
freedom are 1 and 30 respectively, so that F and the associated p-value
may be obtained as follows:

local f=(`ddev´/1)/(`dev0´/30)
display `f´
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.00362382

display fprob(1,30,`f´)

.95239706

The general method for testing the difference in fit of two nested
generalized linear models, using the difference in deviance, is not ap-
propriate here because the scale parameter φ = σ2 was estimated.

7.3.3 Logistic regression

The logistic regression analysis of Chapter 6 may also be repeated using
glm. We first read the data as before, without replicating records.

infile fr1 fr2 fr3 fr4 using tumor.dat, clear
gen therapy=int((_n-1)/2)
sort therapy
by therapy: gen sex=_n
reshape long fr, i(therapy sex) j(outc)
gen improve=outc
recode improve 1/2=0 3/4=1
list

therapy sex outc fr improve

1. 0 1 1 28 0
2. 0 1 2 45 0
3. 0 1 3 29 1
4. 0 1 4 26 1
5. 0 2 1 4 0

6. 0 2 2 12 0
7. 0 2 3 5 1
8. 0 2 4 2 1
9. 1 1 1 41 0
10. 1 1 2 44 0

11. 1 1 3 20 1
12. 1 1 4 20 1
13. 1 2 1 12 0
14. 1 2 2 7 0
15. 1 2 3 3 1

16. 1 2 4 1 1

The glm command may be used with weights just like other estima-
tion commands, so that we can analyze the data using fweight.
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glm improve therapy sex [fweight=fr], fam(binomial) /*
*/ link(logit)

(see Display 7.5).

Iteration 0: log likelihood = -190.9051
Iteration 1: log likelihood = -190.63185
Iteration 2: log likelihood = -190.63171
Iteration 3: log likelihood = -190.63171

Generalized linear models No. of obs = 299
Optimization : ML: Newton-Raphson Residual df = 296

Scale parameter = 1
Deviance = 381.2634298 (1/df) Deviance = 1.288052
Pearson = 298.7046083 (1/df) Pearson = 1.009137

Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]
Standard errors : OIM

Log likelihood = -190.6317149 AIC = 1.295195
BIC = -1306.067868

improve Coef. Std. Err. z P>|z| [95% Conf. Interval]

therapy -.5022014 .2456898 -2.04 0.041 -.9837445 -.0206582
sex -.6543125 .3714739 -1.76 0.078 -1.382388 .0737629

_cons .3858095 .4514172 0.85 0.393 -.4989519 1.270571

Display 7.5

The likelihood ratio test for sex can be obtained as follows:

local dev0=e(deviance)
quietly glm improve therapy [fweight=fr], fam(binomial) /*
*/ link(logit)

local dev1=e(deviance)
dis ‘dev1’-‘dev0’

3.3459816

dis chiprob(1,‘dev1’-‘dev0’)

.0673693

which gives the same result as in Chapter 6. (We could also have used
estimates store and lrtest as in Section 6.3.1.)
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7.3.4 Australian school children

We now move on to analyze the data in Table 7.1 to investigate dif-
ferences between aboriginal and white children in the mean number
of days absent from school after controlling for other covariates. The
data are available as a Stata file quine.dta and may therefore be read
simply by using the command

use quine, clear

The variables are of type string and can be converted to numeric using
the encode command as follows:

encode eth, gen(ethnic)
drop eth
encode sex, gen(gender)
drop sex
encode age, gen(class)
drop age
encode lrn, gen(slow)
drop lrn

The number of children in each of the combinations of categories of
gender, class, and slow can be found using

table slow class ethnic, contents(freq) by(gender)

(see Display 7.6). This reveals that there were no ‘slow learners’ in

ethnic and class
gender A N
and slow F0 F1 F2 F3 F0 F1 F2 F3

F
AL 4 5 1 9 4 6 1 10
SL 1 10 8 1 11 9

M
AL 5 2 7 7 6 2 7 7
SL 3 3 4 3 7 3

Display 7.6

class F3. A table of the means and standard deviations is obtained
using

table slow class ethnic, contents(mean days sd days) /*
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*/ by(gender) format(%4.1f)

(see Display 7.7), where the format() option causes only a single deci-

ethnic and class
gender A N
and slow F0 F1 F2 F3 F0 F1 F2 F3

F
AL 21.3 11.4 2.0 14.6 18.5 11.0 1.0 13.5

17.7 6.5 14.9 10.7 8.9 11.5

SL 3.0 22.6 36.4 25.0 6.0 6.2
18.7 26.5 4.2 5.0

M
AL 13.0 10.5 27.4 27.1 5.3 3.5 9.1 27.3

8.0 4.9 14.7 10.4 5.4 0.7 9.5 22.9

SL 9.0 9.0 37.0 30.0 6.1 29.3
6.2 5.2 23.4 32.5 6.1 7.0

Display 7.7

mal place to be given. This table suggests that the variance associated
with the Poisson distribution is not appropriate here as squaring the
standard deviations (to get the variances) results in values that are
greater than the means, i.e., there is overdispersion. In this case, the
overdispersion probably arises from substantial variability in children’s
underlying tendency to miss days of school that cannot be fully ex-
plained by the variables we have included in the model.

Ignoring the problem of overdispersion for the moment, a gener-
alized linear model with a Poisson family and log link can be fitted
using

glm days slow class ethnic gender, fam(pois) link(log)

(see Display 7.8). The algorithm takes four iterations to converge to the
maximum likelihood (or minimum deviance) solution. In the absence
of overdispersion, the scale parameters based on the Pearson X2 or the
deviance should be close to 1. The values of 14.1 and 12.5, respectively,
therefore indicate that there is overdispersion. The confidence intervals
are therefore likely to be too narrow. McCullagh and Nelder (1989) use
the Pearson X2 divided by the degrees of freedom to estimate the scale
parameter for the quasi-likelihood method for Poisson models. This
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Iteration 0: log likelihood = -1192.3347
Iteration 1: log likelihood = -1178.6003
Iteration 2: log likelihood = -1178.5612
Iteration 3: log likelihood = -1178.5612

Generalized linear models No. of obs = 146
Optimization : ML: Newton-Raphson Residual df = 141

Scale parameter = 1
Deviance = 1768.64529 (1/df) Deviance = 12.54358
Pearson = 1990.142857 (1/df) Pearson = 14.11449

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]
Standard errors : OIM

Log likelihood = -1178.561184 AIC = 16.21317
BIC = 1065.956757

days Coef. Std. Err. z P>|z| [95% Conf. Interval]

slow .2661578 .0445715 5.97 0.000 .1787992 .3535164
class .2094662 .0218245 9.60 0.000 .166691 .2522414
ethnic -.5511688 .0418391 -13.17 0.000 -.633172 -.4691656
gender .2256243 .0415927 5.42 0.000 .1441041 .3071445
_cons 2.336676 .1427925 16.36 0.000 2.056808 2.616545

Display 7.8

may be achieved using the option scale(x2):

glm days slow class ethnic gender, fam(pois) link(log) /*
*/ scale(x2) nolog

(see Display 7.9). Here, the option nolog was used to stop the iteration
log from being printed. Allowing for overdispersion has no effect on the
regression coefficients, but a large effect on the p-values and confidence
intervals so that gender and slow are now no longer significant at the
5% level. These terms will be removed from the model. The coefficients
can be interpreted as the difference in the logs of the predicted mean
counts between groups. For example, the log of the predicted mean
number of days absent from school for white children is −0.55 lower
than that for aboriginals.

ln(µ̂2) = ln(µ̂1) − 0.55 (7.11)

Exponentiating the coefficients yields count ratios (or rate ratios). Stata
exponentiates all coefficients and confidence intervals when the option
eform is used:

glm days class ethnic, fam(pois) link(log) scale(x2) /*
*/ eform nolog
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Generalized linear models No. of obs = 146
Optimization : ML: Newton-Raphson Residual df = 141

Scale parameter = 1
Deviance = 1768.64529 (1/df) Deviance = 12.54358
Pearson = 1990.142857 (1/df) Pearson = 14.11449

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]
Standard errors : OIM

Log likelihood = -1178.561184 AIC = 16.21317
BIC = 1065.956757

days Coef. Std. Err. z P>|z| [95% Conf. Interval]

slow .2661578 .1674519 1.59 0.112 -.0620419 .5943575
class .2094662 .0819929 2.55 0.011 .0487631 .3701693
ethnic -.5511688 .1571865 -3.51 0.000 -.8592486 -.243089
gender .2256243 .1562606 1.44 0.149 -.0806409 .5318896
_cons 2.336676 .5364608 4.36 0.000 1.285233 3.38812

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 7.9

(see Display 7.10). Therefore, white children are absent from school
about 58% as often as aboriginal children (95% confidence interval
from 42% to 79%) after controlling for class. We have treated class
as a continuous covariate. This implies that the rate ratio for two
categories is a constant multiple of the difference in scores assigned to
these categories; for example the rate ratio comparing classes F1 and F0
is the same as that comparing F2 and F1. To see whether this appears
to be appropriate, we can form the square of class and include this in
the model:

gen class2=class^2
glm days class class2 ethnic, fam(pois) link(log) /*

*/ scale(x2) eform nolog

(see Display 7.11). This term is not significant so we can return to the
simpler model. (Note that the interaction between class and ethnic
is also not significant, see exercises.)

We now look at the residuals for this model. The post-estimation
command predict that was used for regress and logistic can be
used here as well. To obtain standardized Pearson residuals, use the
pearson option with predict and divide the residuals by the square
root of the estimated dispersion parameter stored in e(dispersp ps):

qui glm days class ethnic, fam(pois) link(log) scale(x2)
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Generalized linear models No. of obs = 146
Optimization : ML: Newton-Raphson Residual df = 143

Scale parameter = 1
Deviance = 1823.481292 (1/df) Deviance = 12.75162
Pearson = 2091.29704 (1/df) Pearson = 14.62445

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]
Standard errors : OIM

Log likelihood = -1205.979185 AIC = 16.56136
BIC = 1110.825545

days IRR Std. Err. z P>|z| [95% Conf. Interval]

class 1.177895 .0895256 2.15 0.031 1.014872 1.367105
ethnic .5782531 .0924981 -3.42 0.001 .4226284 .7911836

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 7.10

Generalized linear models No. of obs = 146
Optimization : ML: Newton-Raphson Residual df = 142

Scale parameter = 1
Deviance = 1822.560172 (1/df) Deviance = 12.83493
Pearson = 2081.259434 (1/df) Pearson = 14.65676

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]
Standard errors : OIM

Log likelihood = -1205.518625 AIC = 16.56875
BIC = 1114.888032

days IRR Std. Err. z P>|z| [95% Conf. Interval]

class 1.059399 .4543011 0.13 0.893 .4571295 2.455158
class2 1.020512 .0825501 0.25 0.802 .8708906 1.195839
ethnic .5784944 .092643 -3.42 0.001 .4226525 .7917989

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 7.11
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predict resp, pearson
gen stres=resp/sqrt(e(dispersp ps))

The residuals are plotted against the linear predictor using

predict xb, xb
twoway scatter stres xb, ytitle("Standardized Residuals")

−
.5

0
.5

1
1.

5
S

ta
nd

ar
di

ze
d 

R
es

id
ua

ls

2.2 2.4 2.6 2.8 3 3.2
linear predictor

Figure 7.1: Standardized residuals against linear predictor.

with the result shown in Figure 7.1.
There is one large outlier. In order to find out which observation

this is, we list a number of variables for cases with large standardized
Pearson residuals:

predict mu, mu
list stres days mu ethnic class if stres>2|stres<-2

(see Display 7.12). Case 72, a white primary school child, has a very
large residual.

We now also check the assumptions of the model by estimating
robust standard errors.

glm days class ethnic, fam(pois) link(log) robust nolog

(see Display 7.13) giving almost exactly the same p-values as the quasi-
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stres days mu ethnic class

45. 2.028696 53 19.07713 A F1
46. 2.0885 54 19.07713 A F1
58. 2.067949 60 22.47085 A F2
59. 3.225102 81 22.47085 A F2
72. 4.919289 67 9.365361 N F0

104. 3.585005 69 15.30538 N F3
109. 2.017287 33 9.365361 N F0

Display 7.12

Generalized linear models No. of obs = 146
Optimization : ML: Newton-Raphson Residual df = 143

Scale parameter = 1
Deviance = 1823.481292 (1/df) Deviance = 12.75162
Pearson = 2091.29704 (1/df) Pearson = 14.62445

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]
Standard errors : Sandwich

Log pseudo-likelihood = -1205.979185 AIC = 16.56136
BIC = 1110.825545

Robust
days Coef. Std. Err. z P>|z| [95% Conf. Interval]

class .1637288 .0766153 2.14 0.033 .0135655 .313892
ethnic -.5477436 .1585381 -3.45 0.001 -.8584725 -.2370147
_cons 3.168776 .3065466 10.34 0.000 2.567956 3.769597

Display 7.13
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likelihood solution,

glm days class ethnic, fam(pois) link(log) scale(x2) nolog

(see Display 7.14). Alternatively, we can use the bootstrap command

Generalized linear models No. of obs = 146
Optimization : ML: Newton-Raphson Residual df = 143

Scale parameter = 1
Deviance = 1823.481292 (1/df) Deviance = 12.75162
Pearson = 2091.29704 (1/df) Pearson = 14.62445

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]
Standard errors : OIM

Log likelihood = -1205.979185 AIC = 16.56136
BIC = 1110.825545

days Coef. Std. Err. z P>|z| [95% Conf. Interval]

class .1637288 .0760048 2.15 0.031 .0147622 .3126954
ethnic -.5477436 .1599613 -3.42 0.001 -.861262 -.2342252
_cons 3.168776 .3170159 10.00 0.000 2.547437 3.790116

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 7.14

bs, followed by the estimation command in quotes, followed, in quotes,
by expressions for the estimates for which bootstrap standard errors are
required. To be on the safe side, we will ask for 500 bootstrap samples
using the option reps(500). First, we set the seed of the pseudorandom
number generator using the set seed command so that we can run the
sequence of commands again in the future and obtain the same results.

set seed 12345678
bs "poisson days class ethnic" "_b[class] _b[ethnic]", /*
*/ reps(500)

(see Display 7.15). This compares very well with the robust Poisson
and quasi-likelihood results. Note that it is also possible to use boot-
strapping within the glm command using the bstrap and brep(#)
options.

We could also model overdispersion by assuming a random effects
model where each child has an unobserved, random proneness to be
absent from school. This proneness (called frailty in a medical context)
multiplies the rate predicted by the covariates so that some children
have higher or lower rates of absence from school than other children
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command: glm days class ethnic , fam(pois) link(log)
statistics: _bs_1 = _b[class]

_bs_2 = _b[ethnic]

Bootstrap statistics Number of obs = 146
Replications = 500

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]

_bs_1 500 .1637288 .0026568 .0708082 .0246099 .3028477 (N)
.0203793 .3041895 (P)
.014529 .2918807 (BC)

_bs_2 500 -.5477436 -.0126206 .1462108 -.8350083 -.260479 (N)
-.8556656 -.2822307 (P)
-.8363549 -.2529301 (BC)

Note: N = normal
P = percentile
BC = bias-corrected

Display 7.15

with the same covariates. The observed counts are assumed to have a
Poisson distribution conditional on the random effects. If the frailties
are assumed to have a log gamma distribution, then the (marginal)
distribution of the counts has a negative binomial distribution. The
negative binomial model may be fitted using nbreg as follows:

nbreg days class ethnic, nolog

(see Display 7.16). Alternatively, the same model can be estimated
using glm with family(nbinomial).

All four methods of analyzing the data lead to the same conclusions.
The Poisson model is a special case of the negative binomial model
with α = 0. The likelihood ratio test for α is therefore a test of the
negative binomial against the Poisson distribution. The very small p-
value ‘against Poisson’ indicates that there is significant overdispersion.
(Note that the test is too conservative since the null hypothesis is on
the boundary of the parameter space, see e.g., Snijders and Bosker,
1999.)

7.4 Exercises

1. Calculate the F -statistic and difference in deviance for adding status
to a model already containing cond for the data in slim.dat.

2. Fit the model using status as the only explanatory variable, using
robust standard errors. How does this compare with a t-test with
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Negative binomial regression Number of obs = 146
LR chi2(2) = 15.77
Prob > chi2 = 0.0004

Log likelihood = -551.24625 Pseudo R2 = 0.0141

days Coef. Std. Err. z P>|z| [95% Conf. Interval]

class .1505165 .0732832 2.05 0.040 .0068841 .2941489
ethnic -.5414185 .1578378 -3.43 0.001 -.8507748 -.2320622
_cons 3.19392 .3217681 9.93 0.000 2.563266 3.824574

/lnalpha -.1759664 .1243878 -.4197619 .0678292

alpha .8386462 .1043173 .6572032 1.070182

Likelihood-ratio test of alpha=0: chibar2(01) = 1309.47 Prob>=chibar2 = 0.000

Display 7.16

unequal variances?
3. Carry out a significance test for the interaction between class and

ethnic for the data in quine.dta.
4. Excluding the potential outlier (case 72), fit the model with ex-

planatory variables ethnic and class.
5. Dichotomize days absent from school by classifying 14 days or more

as frequently absent. Analyze this new response using both logistic
and probit links and the binomial family.

6. Repeat the analyses with the robust option, and compare the ro-
bust standard errors with the standard errors obtained using boot-
strapping.
See also the Exercises in Chapter 11.
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Chapter 8

Summary Measure

Analysis of Longitudinal

Data: The Treatment of

Post-Natal Depression

8.1 Description of data

The data set to be analyzed in this chapter originates from a clinical
trial of the use of estrogen patches in the treatment of postnatal de-
pression; full details are given in Gregoire et al. (1996). In total, 61
women with major depression, which began within 3 months of child-
birth and persisted for up to 18 months postnatally, were allocated
randomly to the active treatment or a placebo (a dummy patch); 34
received the former and the remaining 27 received the latter. The
women were assessed pretreatment and monthly for six months after
treatment on the Edinburgh postnatal depression scale (EPDS), higher
values of which indicate increasingly severe depression. The data are
shown in Table 8.1; a value of −9 in this table indicates that the obser-
vation is missing. The non-integer depression scores result from missing
questionnaire items (in this case the average of all available items was
multiplied by the total number of items). The variables are

� subj: patient identifier
� group: treatment group (1: estrogen patch, 0: placebo patch)
� pre: pretreatment or baseline EPDS depression score
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� dep1 to dep6: EPDS depression scores for visits 1 to 6
The main question of interest here is whether the estrogen patch is
effective at reducing post-natal depression compared with the placebo.

Table 8.1 Data in depress.dat
subj group pre dep1 dep2 dep3 dep4 dep5 dep6

1 0 18 17 18 15 17 14 15
2 0 27 26 23 18 17 12 10
3 0 16 17 14 −9 −9 −9 −9
4 0 17 14 23 17 13 12 12
5 0 15 12 10 8 4 5 5
6 0 20 19 11.54 9 8 6.82 5.05
7 0 16 13 13 9 7 8 7
8 0 28 26 27 −9 −9 −9 −9
9 0 28 26 24 19 13.94 11 9

10 0 25 9 12 15 12 13 20
11 0 24 14 −9 −9 −9 −9 −9
12 0 16 19 13 14 23 15 11
13 0 26 13 22 −9 −9 −9 −9
14 0 21 7 13 −9 −9 −9 −9
15 0 21 18 −9 −9 −9 −9 −9
16 0 22 18 −9 −9 −9 −9 −9
17 0 26 19 13 22 12 18 13
18 0 19 19 7 8 2 5 6
19 0 22 20 15 20 17 15 13.73
20 0 16 7 8 12 10 10 12
21 0 21 19 18 16 13 16 15
22 0 20 16 21 17 21 16 18
23 0 17 15 −9 −9 −9 −9 −9
24 0 22 20 21 17 14 14 10
25 0 19 16 19 −9 −9 −9 −9
26 0 21 7 4 4.19 4.73 3.03 3.45
27 0 18 19 −9 −9 −9 −9 −9
28 1 21 13 12 9 9 13 6
29 1 27 8 17 15 7 5 7
30 1 15 8 12.27 10 10 6 5.96
31 1 24 14 14 13 12 18 15
32 1 15 15 16 11 14 12 8
33 1 17 9 5 3 6 0 2
34 1 20 7 7 7 12 9 6
35 1 18 8 1 1 2 0 1
36 1 28 11 7 3 2 2 2
37 1 21 7 8 6 6.5 4.64 4.97
38 1 18 8 6 4 11 7 6
39 1 27.46 22 27 24 22 24 23
40 1 19 14 12 15 12 9 6
41 1 20 13 10 7 9 11 11
42 1 16 17 26 −9 −9 −9 −9
43 1 21 19 9 9 12 5 7
44 1 23 11 7 5 8 2 3
45 1 23 16 13 −9 −9 −9 −9
46 1 24 16 15 11 11 11 11
47 1 25 20 18 16 9 10 6
48 1 22 15 17.57 12 9 8 6.5
49 1 20 7 2 1 0 0 2
50 1 20 12.13 8 6 3 2 3
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Data in depress.dat (continued)
51 1 25 15 24 18 15.19 13 12.32
52 1 18 17 6 2 2 0 1
53 1 26 1 18 10 13 12 10
54 1 20 27 13 9 8 4 5
55 1 17 20 10 8.89 8.49 7.02 6.79
56 1 22 12 −9 −9 −9 −9 −9
57 1 22 15.38 2 4 6 3 3
58 1 23 11 9 10 8 7 4
59 1 17 15 −9 −9 −9 −9 −9
60 1 22 7 12 15 −9 −9 −9
61 1 26 24 −9 −9 −9 −9 −9

8.2 The analysis of longitudinal data

The data in Table 8.1 consist of repeated observations over time on
each of the 61 patients; such data are generally referred to as longitudi-
nal data, panel data or repeated measurements, and as cross-sectional
time-series in Stata. There is a large body of methods that can be
used to analyze longitudinal data, ranging from the simple to the com-
plex. Some useful references are Diggle et al. (2002), Everitt (1995),
and Hand and Crowder (1996). In this chapter we concentrate on the
following approaches:

� Graphical displays
� Summary measure or response feature analysis

In the next chapter two chapters, more formal modeling techniques will
be applied to the data.

8.3 Analysis using Stata

Assuming the data are in an ASCII file, depress.dat, as listed in
Table 8.1, they may be read into Stata for analysis using the following
instructions:

infile subj group pre dep1 dep2 dep3 dep4 dep5 dep6 /*
*/ using depress.dat

mvdecode _all, mv(-9)

The second of these instructions converts values of −9 in the data
to missing values.

It is useful to begin examination of these data using the summarize
procedure to calculate means, variances etc., within each of the two
treatment groups:

summarize pre-dep6 if group==0
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(see Display 8.1).

Variable Obs Mean Std. Dev. Min Max

pre 27 20.77778 3.954874 15 28
dep1 27 16.48148 5.279644 7 26
dep2 22 15.88818 6.124177 4 27
dep3 17 14.12882 4.974648 4.19 22
dep4 17 12.27471 5.848791 2 23

dep5 17 11.40294 4.438702 3.03 18
dep6 17 10.89588 4.68157 3.45 20

Display 8.1

summarize pre-dep6 if group==1

(see Display 8.2). There is a general decline in the depression score

Variable Obs Mean Std. Dev. Min Max

pre 34 21.24882 3.574432 15 28
dep1 34 13.36794 5.556373 1 27
dep2 31 11.73677 6.575079 1 27
dep3 29 9.134138 5.475564 1 24
dep4 28 8.827857 4.666653 0 22

dep5 28 7.309286 5.740988 0 24
dep6 28 6.590714 4.730158 1 23

Display 8.2

over time in both groups, with the values in the active treatment group
appearing to be consistently lower.

8.3.1 Graphical displays

A useful preliminary step in the analysis of longitudinal data is to
graph the observations in some way. The aim is to highlight two par-
ticular aspects of the data, namely, how they evolve over time and how
the measurements made at different times are related. A number of
graphical displays can be used, including:
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� separate plots of each subject’s responses against time, differen-
tiating in some way between subjects in different groups

� boxplots of the observations at each time point by treatment
group

� a plot of means and standard errors by treatment group for every
time point

� a scatterplot matrix of the repeated measurements
To begin, plot the required scatterplot matrix, identifying treatment

groups with the labels 0 and 1, using

graph matrix pre-dep6, mlabel(group) msymbol(none) /*
*/ mlabposition(0)

The resulting plot is shown in Figure 8.1. The most obvious feature of
this diagram is the increasingly strong relationship between the mea-
surements of depression as the time interval between them decreases.
This has important implications for the models appropriate for longi-
tudinal data, as we will see in Chapter 10.
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Figure 8.1: Scatter-plot matrix for depression scores at six visits.

To obtain the other graphs mentioned above, the dataset needs to
be restructured from its present wide form (one column for each visit)
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to the long form (one row for each visit) using the reshape command.
Before running reshape, we will preserve the data using the preserve
command so that they can later be restored using restore:

preserve
reshape long dep, i(subj) j(visit)
list in 1/13, clean

The first 13 observations of the data in long form are shown in Dis-
play 8.3.

subj visit group pre dep
1. 1 1 0 18 17
2. 1 2 0 18 18
3. 1 3 0 18 15
4. 1 4 0 18 17
5. 1 5 0 18 14
6. 1 6 0 18 15
7. 2 1 0 27 26
8. 2 2 0 27 23
9. 2 3 0 27 18
10. 2 4 0 27 17
11. 2 5 0 27 12
12. 2 6 0 27 10
13. 3 1 0 16 17

Display 8.3

We will first plot the subjects’ individual response profiles over the
visits separately for each group using the by() option. To obtain the
correct group labels with the by() option we must first label the values
of group:

label define treat 0 "Placebo" 1 "Estrogen"
label values group treat

In each graph we want to connect the points belonging to a given
subject, but avoid connecting points of different subjects. A simple
way of achieving this is to use the connect(ascending) option. Before
plotting, the data need to be sorted by the grouping variable and by
the x variable (here visit):

sort group subj visit
twoway connected dep visit, connect(ascending) by(group) /*
*/ ytitle(Depression) xlabel(1/6)

The connect(ascending) option connects points only so long as visit
is ascending. For the first subject (subj=1) this is true; but for the sec-
ond subject, visit begins at 1 again, so the last point for subject one is
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not connected with the first point for subject two. The remaining points
for this subject are, however, connected and so on. The xlabel() op-
tion was used here to make the axis range start at 1 instead of 0. The
diagram is shown in Figure 8.2. (Some points are connected at visit
one; this happens when successive subjects have missing data for all
subsequent visits so that visit does not decrease when subj increases.)
The individual plots reflect the general decline in the depression scores
over time indicated by the means obtained using the summarize com-
mand; there is, however, considerable variability. The phenomenon
of ‘tracking’ is apparent whereby some individuals have consistently
higher values than other individuals, leading to within-subject corre-
lations. Notice that some profiles are not complete because of missing
values.
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Figure 8.2: Individual response profiles by treatment group.

To obtain the boxplots of the depression scores at each visit for each
treatment group, the following instruction can be used:

graph box dep, over(visit) over(group, /*
*/ relabel(1 "Placebo group" 2 "Estrogen group"))
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Here the over() options specify two grouping variables, visit and
group to plot the distributions by visit within groups. The relabel()
option is used to define labels for the groups. Here ‘1’ refers to the first
level of group (0 in this case) and ‘2’ to the second. The resulting graph
is shown in Figure 8.3. Again, the general decline in depression scores in
both treatment groups can be seen and, in the active treatment group,
there is some evidence of outliers which may need to be examined.
(Figure 8.2 shows that four of the outliers are due to one subject whose
response profile lies above the others.)

0
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30

Placebo group Estrogen group

1 2 3 4 5 6 1 2 3 4 5 6

Figure 8.3: Boxplots for six visits by treatment group.

A plot of the mean profiles of each treatment group, which includes
information about the standard errors of each mean, can be obtained
using the collapse instruction that produces a dataset consisting of
selected summary statistics. Here, we need the mean depression score
on each visit for each group, the corresponding standard deviations, and
a count of the number of observations on which these two statistics are
based.

collapse (mean) dep (sd) sddep=dep (count) n=dep, /*
*/ by(visit group)

list in 1/10
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(see Display 8.4). The mean value is now stored in dep; but since more

visit group dep sddep n
1. 1 0 16.48148 5.279644 27
2. 1 1 13.36794 5.556373 34
3. 2 0 15.88818 6.124177 22
4. 2 1 11.73677 6.575079 31
5. 3 0 14.12882 4.974648 17
6. 3 1 9.134138 5.475564 29
7. 4 0 12.27471 5.848791 17
8. 4 1 8.827857 4.666653 28
9. 5 0 11.40294 4.438702 17
10. 5 1 7.309286 5.740988 28

Display 8.4

than one summary statistic for the depression scores were required, the
remaining statistics were given new names in the collapse instruction.

The required mean and standard error plots can now be produced
as follows:

sort group
gen high = dep + 2*sddep/sqrt(n)
gen low = dep - 2*sddep/sqrt(n)
twoway (rarea low high visit, bfcolor(gs12)) /*
*/ (connected dep visit, mcolor(black) /*
*/ clcolor(black)), by(group) /*
*/ legend(order(1 "95% CI" 2 "mean depression"))

Here twoway rarea produces a shaded area between the lines low ver-
sus visit and high versus visit, the 95% confidence limits for the
mean. It is important that the line for the mean is plotted after the
shaded area because it would otherwise be hidden underneath it. The
resulting diagram is shown in Figure 8.4.

8.3.2 Response feature analysis

A relatively straightforward approach to the analysis of longitudinal
data is that involving the use of summary measures, sometimes known
as response feature analysis. The responses of each subject are used to
construct a single number that characterizes some relevant aspect of
the subject’s response profile. (In some situations more than a single
summary measure may be required.) The summary measure needs to
be chosen before the analysis of the data. The most commonly used
measure is the mean of the responses over time because many inves-
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Figure 8.4: Mean and standard error plots; the shaded areas represent
± 2 standard errors.

tigations, e.g., clinical trials, are most concerned with differences in
overall levels rather than more subtle effects. Other possible summary
measures are listed in Matthews et al. (1990) and are shown here in
Table 8.2.

Having identified a suitable summary measure, the analysis of the
data generally involves the application of a simple univariate test (usu-
ally a t-test or its nonparametric equivalent) for group differences on
the single measure now available for each subject. For the estrogen
patch trial data, the mean over time seems an obvious summary mea-
sure. The mean of all non-missing values is obtained (after restoring
the data) using

restore
egen avg=rmean(dep1 dep2 dep3 dep4 dep5 dep6)

The differences between these means may be tested using a t-test as-
suming equal variances in the populations:

ttest avg, by(group)

(see Display 8.5). The assumption of equal variances can be relaxed
using the unequal option:

ttest avg, by(group) unequal
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Table 8.2 Response features suggested in Matthews et al. (1990)

Type of Property to be compared
data between groups Summary measure
Peaked overall value of response mean or area under curve

Peaked value of most extreme response maximum (minimum)

Peaked delay in response time to maximum or minimum

Growth rate of change of response linear regression coefficient

Growth final level of response final value or (relative) difference
between first and last

Growth delay in response time to reach a particular value

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 27 14.75605 .8782852 4.563704 12.95071 16.56139
1 34 10.55206 .9187872 5.357404 8.682772 12.42135

combined 61 12.41284 .6923949 5.407777 11.02785 13.79784

diff 4.20399 1.294842 1.613017 6.794964

Degrees of freedom: 59

Ho: mean(0) - mean(1) = diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
t = 3.2467 t = 3.2467 t = 3.2467

P < t = 0.9990 P > |t| = 0.0019 P > t = 0.0010

Display 8.5
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(see Display 8.6). In each case the conclusion is that the mean de-

Two-sample t test with unequal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 27 14.75605 .8782852 4.563704 12.95071 16.56139
1 34 10.55206 .9187872 5.357404 8.682772 12.42135

combined 61 12.41284 .6923949 5.407777 11.02785 13.79784

diff 4.20399 1.271045 1.660343 6.747637

Satterthwaite’s degrees of freedom: 58.6777

Ho: mean(0) - mean(1) = diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
t = 3.3075 t = 3.3075 t = 3.3075

P < t = 0.9992 P > |t| = 0.0016 P > t = 0.0008

Display 8.6

pression score is substantially larger in the estrogen group than the
placebo group. The difference in mean depression scores is estimated
as 4.3 with a 95% confidence interval from 1.7 to 6.7.

The summary measure approach to longitudinal data has a number
of advantages:

� Appropriate choice of summary measure ensures that the anal-
ysis is focused on relevant and interpretable aspects of the data,

� The method is easy to explain and intuitive, and

� To some extent missing and irregularly spaced observations can
be accommodated.

However, the method is somewhat ad hoc, particularly in its treatment
of missing data. For instance, if the summary measure is a mean, but
there is actually a decline in the response over time, then the mean
of all available data will overestimate the mean for those who dropped
out early. Furthermore, response feature analysis treats all summaries
as equally precise even if some are based on fewer observations due to
missing data. In the next two chapters we will therefore discuss more
formal approaches to longitudinal data, random effects modeling, and
generalized estimating equations.
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8.4 Exercises

1. How would you produce boxplots corresponding to those shown in
Figure 8.3 using the data in the wide form?

2. Compare the results of the t-tests given in the text with the corre-
sponding t-tests calculated only for those subjects having observa-
tions on all six post-randomization visits.

3. Repeat the summary measures analysis described in the text using
the maximum over time instead of the mean (see help egen).

4. Test for differences in the mean over time controlling for the baseline
measurement using
a. a change score defined as the difference between the mean over

time and the baseline measurement, and
b. analysis of covariance of the mean over time using the baseline

measurement as a covariate.
See also Exercises in Chapter 9.
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Chapter 9

Random Effects Models:

Thought Disorder and

Schizophrenia

9.1 Description of data

In this chapter we will analyze data from the Madras Longitudinal
Schizophrenia Study in which patients were followed up monthly after
their first hospitalization for schizophrenia. The study is described in
detail in Thara et al. (1994). Here we use a subset of the data analyzed
by Diggle et al. (2002), namely data on thought disorder (1: present,
0: absent) at 0, 2, 6, 8, and 10 months after hospitalization on women
only. The thought disorder responses are given as y0 to y10 in Table 9.1
where a ‘.’ indicates a missing value. The variable early is a dummy
variable for early onset of disease (1: age-of-onset less than 20 years, 0:
age-of-onset 20 years or above). An important question here is whether
the course of illness differs between patients with early and late onset.
We will also reanalyze the post-natal depression data described in the
previous chapter.

9.2 Random effects models

The data listed in Table 9.1 consist of repeated observations on the
same subject taken over time and are a further example of a set of lon-
gitudinal data. During the last decades, statisticians have considerably
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Table 9.1 Data in madras.dta

id early y0 y2 y6 y8 y10
1 0 1 1 0 0 0
6 1 0 0 0 0 0

10 0 1 1 0 0 0
13 0 0 0 0 0 0
14 0 1 1 1 1 1
15 0 1 1 0 0 0
16 0 1 0 1 0 0
22 0 1 1 0 0 0
23 0 0 0 1 0 0
25 1 0 0 0 0 0
27 1 1 1 1 0 1
28 0 0 0 . . .
31 1 1 1 0 0 0
34 0 1 1 0 0 0
36 1 1 1 0 0 0
43 0 1 1 1 0 0
44 0 0 1 0 0 0
45 0 1 1 0 1 0
46 0 1 1 1 0 0
48 0 0 0 0 0 0
50 0 0 0 1 1 1
51 1 0 1 1 0 0
52 0 1 1 0 1 0
53 0 1 0 0 0 0
56 1 1 0 0 0 0
57 0 0 0 0 0 0
59 0 1 1 0 0 0
61 0 0 0 0 0 0
62 1 1 1 0 0 0
65 1 0 0 0 0 0
66 0 0 0 0 0 0
67 0 0 1 0 0 0
68 0 1 1 1 1 1
71 0 1 1 1 0 0
72 0 1 0 0 0 0
75 1 1 0 0 . .
76 0 0 1 . . .
77 1 0 0 0 0 0
79 0 1 . . . .
80 0 1 1 0 0 0
85 1 1 1 1 0 0
86 0 0 1 . . .
87 0 1 0 0 0 .
90 0 1 1 0 0 0
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enriched the methodology available for the analysis of such data (see
Lindsey, 1999, or Diggle et al. 2002) and many of these developments
are implemented in Stata.

9.2.1 Normally distributed responses

Longitudinal data require special methods of analysis because the re-
sponses at different time points on the same individual may not be
independent even after conditioning on the covariates. For a linear re-
gression model this means that the residuals for the same individual
are correlated. We can model these residual correlations by partitioning
the total residual for subject i at time point j into a subject-specific
random intercept or permanent component ui which is constant over
time plus a residual εij which varies randomly over time. The resulting
random intercept model can be written as

yij = βT xij + ui + εij . (9.1)

The random intercept and residual are each assumed to be indepen-
dently normally distributed with zero means and constant variances τ 2

and σ2, respectively. Furthermore, these random terms are assumed to
be independent of each other and the covariates xij. (It should be noted
that moment-based approaches do not require normality assumptions,
see e.g. Wooldridge (2002), Section 10.4.)

The random intercept model implies that the total residual variance
is

Var(ui + εij) = τ 2 + σ2.

Due to this decomposition of the total residual variance into a between-
subject component τ 2 and a within-subject component σ2, the model is
sometimes referred to as a variance component model. The covariance
between the total residuals at any two time points j and j′ on the same
subject i is

Cov(ui + εij , ui + εij′) = τ 2.

Note that these covariances are induced by the shared random inter-
cept: for subjects with ui > 0, the total residuals will tend to be greater
than the mean (0) and for subjects with ui < 0 they will tend to be
less than the mean.

It follows from the two relations above that the residual correlations
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are given by

Cor(ui + εij, ui + εij′) =
τ 2

τ 2 + σ2
.

This intraclass correlation can be interpreted as the proportion of the
total residual variance (denominator) that is due to residual variability
between subjects (numerator).

The random intercept can be interpreted as the combined effect of all
unobserved subject-specific covariates, often referred to as unobserved
heterogeneity. The random intercepts represent individual differences
in the overall mean level of the response after controlling for covariates.
Random coefficients of covariates can be used to allow for between-
subject heterogeneity in the effects of the covariates. For instance, in
longitudinal data, the shape of the response profile may vary between
subjects in addition to variability in its vertical position. If the overall
shape is linear in time tij , subjects may differ randomly in their slopes
giving a model of the form

yij = βTxij + u0i + u1itij + εij. (9.2)

Here u0i is a random intercept and u1i a random coefficient or slope
of tij. These random effects are assumed to have a bivariate normal
distribution with zero means, variances τ 2

0 and τ 2
1 and covariance τ01.

They are furthermore assumed to be uncorrelated across subjects and
uncorrelated with εij or any of the covariates. If the covariate vector
xij includes tij, the corresponding fixed coefficient βt represents the
mean coefficient of time whereas the random slope u1i represents the
deviation from the mean coefficient for subject i. (Not including tij in
the fixed part of the model would imply that the mean slope is zero.)
The model can also include nonlinear functions of tij , typically powers
of tij, whose coefficients may be fixed or random.

The total residual in (9.2) is u0i + u1itij + εij with variance

Var(u0i + u1itij + εij) = τ 2
0 + 2τ01tij + τ 2

1 t2ij + σ2

which is no longer constant over time but heteroskedastic. Similarly,
the covariance between two total residuals of the same subject,

Cov(u0i + u1itij + εij, u0i + u1itij′ + εij′) = τ 2
0 + τ01(tij + tij′) + τ 2

1 tijtij′ ,

is not constant over time. It should also be noted that both the random
intercept variance and the correlation between the random coefficient
and random intercept depend on the location of tij, i.e., re-estimating
the model after adding a constant to tij will lead to different estimates.
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General terms for random intercept or random coefficient models are
random effects models, mixed effects or mixed models, where ‘mixed’
refers to the presence of both fixed effects β and random effects u0i and
u1i. The models are also hierarchical or multilevel since the elementary
observations at the individual time points (level 1) are nested in sub-
jects (level 2). The models discussed in this chapter are appropriate
for any kind of clustered or two-level data, not just longitudinal. Other
examples of two-level data are people in families, households, neighbor-
hoods, cities, schools, hospitals, firms, etc. In all these types of data,
we can generally not assume that responses for subjects in the same
cluster are independent after controlling for covariates because there is
likely to be unobserved heterogeneity between clusters.

9.2.2 Non-normal responses

For non-normal responses (for example, binary responses) we can ex-
tend the generalized linear model discussed in Chapter 7 by introducing
a random intercept ui into the linear predictor,

ηij = βTxij + ui, (9.3)

where the ui are independently normally distributed with mean zero
and variance τ 2. (We have encountered a similar model in Chapter 7,
namely the negative binomial model with a log link and Poisson dis-
tribution where ui has a log-gamma distribution, and there is only one
observation per subject.) We can further extend the random intercept
model to include random coefficients as we did in the previous section.

Unfortunately, such generalized linear mixed models are difficult to
estimate. This is because the likelihood involves integrals over the ran-
dom effects distribution and these integrals generally do not have closed
forms. Stata uses numerical integration by Gauss-Hermite quadrature
for random intercept models. A user-written program gllamm can be
used to estimate random coefficient models using either quadrature or
an improvement of this method known as adaptive quadrature. The
program can also be used to estimate multilevel models. Note that
approximate methods such as penalized quasilikelihood (e.g., Breslow
and Clayton, 1993) and its refinements do not tend to work well for
data with dichotomous responses and small cluster sizes such as the
thought disorder data (see also Rabe-Hesketh et al., 2002).

An important problem with many longitudinal data sets is the oc-
currence of dropouts, e.g., subjects failing to complete all scheduled
visits in the post-natal depression data. A taxonomy of dropouts is
given in Diggle et al. (2002). Fortunately, maximum likelihood estima-
tion is consistent as long as the data are missing at random (MAR),
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that is, the probability of missingness does not depend on the values
that are missing. For example, if the model is correctly specified, we ob-
tain consistent parameter estimates even if the probability of dropping
out depends on the responses at earlier time points.

Useful books on random effects modeling include Snijders and Bosker
(1999), Verbeke and Molenberghs (2000), Goldstein (2003), and Skro-
ndal and Rabe-Hesketh (2004), as well general books on longitudinal
data such as Lindsey (1999).

9.3 Analysis using Stata

9.3.1 Post-natal depression data

As an example of continuous responses, we first consider the post-natal
depression data analyzed in the previous chapter. The data are read
using

infile subj group pre dep1 dep2 dep3 dep4 dep5 dep6 /*
*/ using depress.dat

All responses must be stacked in a single variable, including the baseline
score pre. This is achieved by first renaming pre to dep0 and then
using the reshape command:

rename pre dep0
reshape long dep, i(subj) j(visit)

We also define value labels for group and change ‘−9’ to missing values

label define treat 0 "Placebo" 1 "Estrogen"
label values group treat
mvdecode _all, mv(-9)

We now estimate a random intercept model using xtreg. (Note that
commands for longitudinal data have the prefix xt in Stata which
stands for cross-sectional time series). First assume that the mean
depression score declines linearly from baseline with different slopes in
the two groups:

gen gr_vis = group*visit
xtreg dep group visit gr_vis, i(subj) mle

The syntax is the same as for regress except that the i() option is
used to specify the cluster identifier, here subj, and the mle option to
obtain maximum likelihood estimates.

The estimates of the ‘fixed’ regression coefficients that do not vary
over individuals are given in the first table in Display 9.1 whereas the
estimates of the standard deviations τ of the random intercept and σ
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Fitting constant-only model:
Iteration 0: log likelihood = -1200.5805
Iteration 1: log likelihood = -1166.1333
Iteration 2: log likelihood = -1159.0981
Iteration 3: log likelihood = -1158.585
Iteration 4: log likelihood = -1158.5807

Fitting full model:
Iteration 0: log likelihood = -1045.9826
Iteration 1: log likelihood = -1045.7124
Iteration 2: log likelihood = -1045.7117

Random-effects ML regression Number of obs = 356
Group variable (i): subj Number of groups = 61

Random effects u_i ~ Gaussian Obs per group: min = 2
avg = 5.8
max = 7

LR chi2(3) = 225.74
Log likelihood = -1045.7117 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.644653 1.163462 -1.41 0.157 -3.924996 .6356901
visit -1.531905 .1736977 -8.82 0.000 -1.872346 -1.191464
gr_vis -.5564469 .2220225 -2.51 0.012 -.9916031 -.1212908
_cons 19.29632 .8717659 22.13 0.000 17.58769 21.00495

/sigma_u 3.560969 .3949951 9.02 0.000 2.786793 4.335145
/sigma_e 3.948191 .161907 24.39 0.000 3.630859 4.265523

rho .4485701 .0598845 .3350721 .5664725

Likelihood-ratio test of sigma_u=0: chibar2(01)= 114.03 Prob>=chibar2 = 0.000

Display 9.1
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of the residuals are given under sigma u and sigma e in the second
table. The intraclass correlation rho in the third table is estimated as
0.45. The fixed regression coefficients show that the average decrease
in depression score is 1.53 per visit in the placebo group and 1.53 +
0.56 per visit in the estrogen group. We can obtain the estimated slope
of time in the estrogen group with its p-value and confidence interval
using lincom:

lincom visit + gr_vis

(see Display 9.2).

( 1) [dep]visit + [dep]gr_vis = 0

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) -2.088352 .1384264 -15.09 0.000 -2.359663 -1.817041

Display 9.2

The model assumes that the effect of visit is linear. However, it
may well be that the depression score gradually levels off, remaining
stable after some period of time. We can investigate this by adding a
quadratic term of visit:

gen vis2 = visit^2
xtreg dep group visit gr_vis vis2, i(subj) mle nolog

The p-value for vis2 in Display 9.3 suggests that the average curve is
not linear but that the downward trend declines over time. To picture
the mean curve, we now plot it together with the observed individual
response profiles:

predict pred0, xb
sort subj visit
twoway (line pred0 visit, connect(ascending) /*
*/ clwidth(thick)) (line dep visit, /*
*/ connect(ascending) clpat(dash)), by(group) /*
*/ ytitle(Depression) legend(order(1 "Fitted mean" /*
*/ 2 "Observed scores"))

giving the graph shown in Figure 9.1 which suggests that the response
curves tend to level off.

Extending the model to include a random coefficient of visit re-
quires the user-contributed program gllamm (for generalized linear la-
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Random-effects ML regression Number of obs = 356
Group variable (i): subj Number of groups = 61

Random effects u_i ~ Gaussian Obs per group: min = 2
avg = 5.8
max = 7

LR chi2(4) = 268.39
Log likelihood = -1024.3838 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.471391 1.139394 -1.29 0.197 -3.704563 .7617806
visit -3.787308 .3710888 -10.21 0.000 -4.514628 -3.059987
gr_vis -.5848499 .2073966 -2.82 0.005 -.9913396 -.1783601

vis2 .3851916 .0569336 6.77 0.000 .2736038 .4967793
_cons 20.91077 .8860177 23.60 0.000 19.17421 22.64734

/sigma_u 3.584665 .3869129 9.26 0.000 2.826329 4.343
/sigma_e 3.678709 .1508811 24.38 0.000 3.382987 3.97443

rho .4870545 .0589037 .3737279 .6014435

Likelihood-ratio test of sigma_u=0: chibar2(01)= 133.51 Prob>=chibar2 = 0.000

Display 9.3
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Figure 9.1: Response profiles and fitted mean curves by treatment
group.
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tent and mixed models) described in Rabe-Hesketh et al. (2002) and
(2004b) (see also the webpage www.gllamm.org). The program can be
obtained from the SSC archive using

ssc install gllamm

We will first re-estimate the random intercept model using gllamm:

gllamm dep group visit gr_vis vis2, i(subj) adapt

The syntax is as for xtreg except that the mle option is not required
since gllamm always uses maximum likelihood, and we have specified
adapt to use adaptive quadrature. The results in Display 9.4 are nearly
identical to those using xtreg. This will not always be the case since
gllamm uses numerical integration for all models, whereas xtreg ex-
ploits the availablility of a closed form likelihood for linear mixed mod-
els. In gllamm the accuracy of the estimates can be improved by in-
creasing the number of quadrature points used for numerical integration
from its default of 8 using the nip() option, a strategy we would always
recommend.

The format of the output for the random part is somewhat different
from that of xtreg. ‘Variance at level 1’ refers to the residual variance
σ2, whereas var(1) under ‘Variances and covariances of random effects’
refers to the random intercept variance τ 2. The standard errors given
in parentheses next to these estimates are not very useful and neither
are the standard errors for the standard deviations reported by xtreg,
since the sampling distributions of the estimates are unlikely to be well
approximated by a normal distribution.

The most common method of predicting random effects is by their
posterior mean, their expectation given the observed responses and co-
variates with the parameter estimates plugged in. These predictions are
also known as empirical Bayes predictions, shrinkage estimates or, in
linear mixed models, best linear unbiased predictions (BLUP). Adding
predictions of the random intercept to the predicted mean response
profile gives individual predicted response profiles. These can be ob-
tained using gllamm’s prediction command gllapred with the linpred
option (for ‘linear predictor’):

gllapred pred, linpred

A graph of the individual predicted profiles is obtained using

twoway (line pred1 visit, connect(ascending)), by(group) /*
*/ ytitle(Depression) xlabel(0/6)

and given in Figure 9.2. It is clear that the mean profiles in Figure 9.1
have simply been shifted up and down to fit the observed individual
profiles more closely.

We can obtain the empirical Bayes predictions of ui using
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Running adaptive quadrature
Iteration 1: log likelihood = -1027.2577
Iteration 2: log likelihood = -1024.4834
Iteration 3: log likelihood = -1024.3838
Iteration 4: log likelihood = -1024.3838

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -1024.3838
Iteration 1: log likelihood = -1024.3838 (backed up)

number of level 1 units = 356
number of level 2 units = 61

Condition Number = 88.726361

gllamm model

log likelihood = -1024.3838

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.47265 1.139489 -1.29 0.196 -3.706007 .7607073
visit -3.786777 .3710823 -10.20 0.000 -4.514085 -3.059469
gr_vis -.5847336 .2073934 -2.82 0.005 -.9912171 -.1782501

vis2 .3851253 .0569325 6.76 0.000 .2735397 .4967109
_cons 20.90994 .8860844 23.60 0.000 19.17324 22.64663

Variance at level 1
------------------------------------------------------------------------------

13.532227 (1.1100236)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (subj)

var(1): 12.853237 (2.7749441)
------------------------------------------------------------------------------

Display 9.4
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Figure 9.2: Predicted response curves for random intercept model.

gllapred rand, u

which creates new variables randm1 for the predictions and rands1
for the posterior standard devations. For linear models the latter are
equal to the prediction error standard deviations, also known as the
‘comparative standard errors’. We can obtain the sampling standard
deviations or ‘diagnostic standard errors’ by taking the square root of
the (prior) random intercept variance, estimated as 12.85, minus the
posterior variance:

gen se = sqrt(12.853237-rands1^2)

(see Skrondal and Rabe-Hesketh (2004) for a detailed discussion of
empirical Bayes and the different kinds of standard errors.) A graph
of the predictions with their approximate 95% confidence intervals for
the placebo group is then obtained using

gen f=visit==0
sort randm1
gen rank=sum(f)
serrbar randm1 se rank if visit==0&group==0, scale(2) /*
*/ xtitle(Rank) ytitle("Random intercept")

with the result shown in Figure 9.3. In linear mixed models the pre-
dicted random effects should be normally distributed, so that we can
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Figure 9.3: Predicted random intercepts and approximate 95% confi-
dence intervals for the placebo group (based on the sampling standard
deviations).
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use graphs to assess the assumption that the ‘true’ random effects are
normally distributed. One possibility is a kernel density plot with a
normal density superimposed:

kdensity randm1 if visit==0, epanechnikov normal /*
*/ xtitle("Predicted random intercept")

In Figure 9.4, the normal density appears to approximate the empirical
density well. Note that this diagnostic cannot be used for generalized
linear mixed models where the predicted random effects are generally
non-normal even under correct specification.
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Figure 9.4: Kernel density estimate for empirical Bayes predictions and
approximating normal density.

We will now allow the coefficient of visit to vary randomly be-
tween subjects by including a random slope in the model. When there
are several random effects (here intercept and slope), we have to de-
fine an equation for each of them to specify the variable multiplying
the random effect. The random intercept u0i in equation (9.2) is not
multiplied by anything, or equivalently it’s multiplied by 1, whereas
the random coefficient u1i is multiplied by tij, the variable visit. We
therefore define the equations as follows:
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gen cons = 1
eq inter: cons
eq slope: visit

The syntax for the equations is simply eq label: varlist, where label
is an arbitrary equation name. We can now run gllamm with two
extra options, nrf(2) to specify that there are two random effects
and eqs(inter slope) to define the variables multiplying the random
effects:

gllamm dep group visit gr_vis vis2, i(subj) nrf(2) /*
*/ eqs(inter slope) adapt

In Display 9.5 we see that the output under ‘Variances and covari-
ances of random effects’ has become more complex. We now have two
variances var(1) and var(2) of the intercept and slope, respectively,
and a covariance cov(2,1). (The first random effect is the random
intercept since inter was the first equation in the eqs() option.) We
see that there is a small positive correlation between the slope and in-
tercept. The log likelihood of this model is −1017.27 compared with
−1024.38 for the random intercept model. A conventional likelihood
ratio test would compare twice the difference in log likelihoods with a
chi-squared distribution with two degrees of freedom (for an extra vari-
ance and covariance parameter). However, the null hypothesis that the
slope has zero variance lies on the boundary of the parameter space
(since a variance cannot be negative), and this test is therefore not
valid. Snijders and Bosker (1999) suggest dividing the p-value of the
conventional likelihood ratio test by two, giving a highly significant
result here.

The empirical Bayes predictions for the random coefficient model
can be obtained and plotted using

gllapred reff, u
twoway scatter reffm2 reffm1 if visit==0, /*
*/ xtitle("Intercept") ytitle("Slope")

giving the graph in Figure 9.5. We could again assess the normality of
the random effects graphically.

The predicted profiles can be plotted using

gllapred pred2, linpred
sort subj visit
twoway (line pred2 visit, connect(ascending)), by(group) /*
*/ ytitle(Depression) xlabel(0/6)

resulting in Figure 9.6 where the curves are now no longer parallel due
to the random slopes.

Finally, we can assess the fit of the model by plotting both observed
and predicted profiles in a trellis graph containing a separate scatterplot
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Running adaptive quadrature
Iteration 1: log likelihood = -1041.9523
Iteration 2: log likelihood = -1028.5971
Iteration 3: log likelihood = -1017.3156
Iteration 4: log likelihood = -1017.2726
Iteration 5: log likelihood = -1017.2726

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -1017.2726
Iteration 1: log likelihood = -1017.2726 (backed up)

number of level 1 units = 356
number of level 2 units = 61

Condition Number = 60.390774

gllamm model

log likelihood = -1017.2726

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.482598 1.023247 -1.45 0.147 -3.488125 .5229291
visit -3.780784 .375162 -10.08 0.000 -4.516088 -3.04548
gr_vis -.5855475 .2685742 -2.18 0.029 -1.111943 -.0591517

vis2 .3891232 .0536605 7.25 0.000 .2839505 .4942959
_cons 20.91118 .7985287 26.19 0.000 19.34609 22.47626

Variance at level 1
------------------------------------------------------------------------------

11.959209 (1.0781307)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (subj)

var(1): 9.7895918 (2.8720274)
cov(2,1): .17530873 (.52828878) cor(2,1): .09213814

var(2): .3697972 (.17467937)
------------------------------------------------------------------------------

Display 9.5
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Figure 9.5: Scatterplot of predicted intercepts and slopes.
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Figure 9.6: Predicted response profiles for random coefficient model.
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for each subject. For the placebo group the command is

twoway (line pred2 visit) (connect dep visit, clpat(dash)) /*
*/ if group==0, by(subj, style(compact)) ytitle(Depression)

and similarly for the treatment group. The resulting graphs are shown
in Figure 9.7. The model appears to represent the data reasonably
well.

9.4 Thought disorder data

The thought disorder data are read in using

use madras

Next we stack the dichotomous responses y0 to y10 into a single vari-
able y, and create a new variable month taking on values 0 to 10 using

reshape long y, i(id) j(month)

We wish to investigate how the risk of having thought disorder evolves
over time and whether there are differences between early and late
onset patients. An obvious first model to estimate is a logistic random
intercept model with fixed effects of month, early and their interaction.
This can be done using Stata’s xtlogit command:

gen month_early = month*early
xtlogit y month early month_early, i(id) nolog or

The output is shown in Display 9.6. The or option was used to obtain
odds ratios in the first table. These suggest that there is a decrease
in the odds of having thought disorder over time. However, patients
with early onset schizophrenia do not differ significantly from late onset
patients in their odds of thought disorder at the time of hospitalization
(OR=1.05) nor do their odds change at a significantly different rate over
time (OR=0.94). The log of the random intercept standard deviation
is estimated as 1.02 and the standard deviation itself as 1.67. Here
rho is the intraclass correlation for the latent responses; see the latent
response formulation of the ordinal logit model in Chapter 6.

The same model can be estimated in gllamm which offers adaptive
quadrature as well as allowing posterior means and other predictions
to be computed using gllapred:

gllamm y month early month_early, i(id) link(logit) /*
*/ family(binom) adapt eform nolog

estimates store mod1

Here we used syntax very similar to that of glm with the link(),
family(), and eform options and stored the estimates for later using
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Figure 9.7: Observed and predicted response profiles for random coef-
ficient model.
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Random-effects logistic regression Number of obs = 244
Group variable (i): id Number of groups = 44

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 5.5
max = 6

Wald chi2(3) = 36.22
Log likelihood = -124.73879 Prob > chi2 = 0.0000

y OR Std. Err. z P>|z| [95% Conf. Interval]

month .6676518 .0517672 -5.21 0.000 .5735233 .777229
early 1.045213 .9163235 0.05 0.960 .1874856 5.826951

month_early .9351536 .1313966 -0.48 0.633 .7100391 1.23164

/lnsig2u 1.022531 .4610921 .1188072 1.926255

sigma_u 1.6674 .3844125 1.061203 2.619878
rho .45802 .1144604 .2550153 .6759908

Likelihood-ratio test of rho=0: chibar2(01) = 26.13 Prob >= chibar2 = 0.000

Display 9.6

estimates store. In Display 9.7 we can see that the estimates are
nearly the same as using xtlogit. Increasing the number of quadrature
points to 12 using nip(12) again gives virtually the same estimates (not
shown) suggesting that 8 points are sufficient.

We now include random slopes of month in the model using the
same syntax as in the linear case to specify the random part:

gen cons = 1
eq slope: month
eq inter: cons
gllamm y month early month_early, i(id) nrf(2) /*
*/ eqs(inter slope) link(logit) family(binom) /*
*/ adapt nolog

estimates store mod2

giving the output in Display 9.8. The log likelihood has decreased by
about 3.5 suggesting that the random slope is needed. The fixed effects
estimates are very similar to those for the random intercept model. The
estimated correlation between the random intercepts and slopes at the
time of hospitalization is −0.71. Note that both the random intercept
variance and the covariance and correlation refer to the situation when
month is zero and change if we move the origin by adding or subtracting
a constant from month.

We now produce some graphs of the model predictions, considering
first the random intercept model. For the post-natal depression data
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number of level 1 units = 244
number of level 2 units = 44

Condition Number = 19.833627

gllamm model

log likelihood = -124.74702

y exp(b) Std. Err. z P>|z| [95% Conf. Interval]

month .6677456 .0516849 -5.22 0.000 .5737548 .7771337
early 1.047086 .9197121 0.05 0.958 .1872089 5.856505

month_early .935051 .1309953 -0.48 0.632 .7105372 1.230506

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 2.755484 (1.242513)
------------------------------------------------------------------------------

Display 9.7
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number of level 1 units = 244
number of level 2 units = 44

Condition Number = 26.475484

gllamm model

log likelihood = -121.19981

y exp(b) Std. Err. z P>|z| [95% Conf. Interval]

month .6030476 .0770181 -3.96 0.000 .4695053 .7745736
early 1.038847 1.252579 0.03 0.975 .0977741 11.03772

month_early .9376264 .1940059 -0.31 0.756 .6250377 1.406544

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 7.1740353 (4.0302042)
cov(2,1): -.70917076 (.53491264) cor(2,1): -.70286756

var(2): .14190285 (.0944932)
------------------------------------------------------------------------------

Display 9.8
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the mean profile in Figure 9.1 was simply equal to the fixed part of
the random intercept model model β̂

T
xij since the mean of the random

intercept is zero. In the logistic model, things are more complicated
because the probability of thought disorder given the random intercept
(the subject-specific probability) is a nonlinear function of the random
intercept:

Pr(yij = 1|ui) =
exp(βT xij + ui)

1 + exp(βTxij + ui)
. (9.4)

The population average probability is therefore not equal to the above
with ui = 0,

∫
Pr(yij = 1|ui) g(ui) dui �= exp(βTxij)

1 + exp(βTxij)
, (9.5)

where g(ui) is the normal probability density function of ui. For this
reason the coefficients β, representing the conditional or subject-specific
effects of covariates, for a given value of the random effect, cannot be
interpreted as population average or marginal effects (which tend to be
closer to zero). (Note that here the term ‘marginal effects’ means pop-
ulation average effects, a very different notion than ‘marginal effects’
in econometrics as computed by the Stata command mfx.)

In gllapred we can use the mu and marg options to obtain the
marginal probabilities on the left-hand side of (9.5) by numerical inte-
gration and the mu and us() options to obtain the conditional proba-
bilities in (9.4) for given values of ui. To obtain smooth curves, we first
create a new dataset where month increases gradually from 0 to 10 and
early equals 1:

replace month = 10*(_n-1)/(_N-1)
replace early = 1
replace month_early = month

Now we can obtain marginal probabilities for the random intercept
model by first restoring the estimates and then using gllapred:

estimates restore mod1
gllapred probm1, mu marg

To calculate conditional probabilities, we must first define variables
equal to the values at which we wish to evaluate ui (0 and ±1.7, ap-
proximately one standard deviation). The variable names must end on
‘1’ since the random intercept is the first (and here the only) random
effect:
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gen m1 = 0
gen l1 = -1.7
gen u1 = 1.7
gllapred probc1_m, mu us(m)
gllapred probc1_l, mu us(l)
gllapred probc1_u, mu us(u)
drop m1 l1 u1

Here the us(m) option specifies that, if there were more than one ran-
dom effect, the values would be in m1, m2, etc. Before producing the
graph, we will make predictions for the random coefficient model:

estimates restore mod2
gllapred probm2, mu marg
gen m1 = 0
gen m2 = 0
gen l1 = -2.7
gen l2 = -0.4
gen u1 = 2.7
gen u2 = 0.4
gen ul1 = 2.7
gen ul2 = -0.4
gen lu1 = -2.7
gen lu2 = 0.4
gllapred probc2_m, mu us(m)
gllapred probc2_l, mu us(l)
gllapred probc2_u, mu us(u)
gllapred probc2_ul, mu us(ul)
gllapred probc2_lu, mu us(lu)

We have produced five conditional predictions; one with both random
effects equal to 0 and 4 for all combinations of high and low values of
the random intercept and slope. The graphs are obtained using

label variable month /*
*/ "Number of months since hospitalization"

twoway (line probm1 month, clwidth(medthick)) /*
*/ (line probc1_m month, clpat(dot) clwidth(medthick)) /*
*/ (line probc1_l month, clpat(dash)) /*
*/ (line probc1_u month, clpat(dash)), /*
*/ legend(order(1 "Marginal" 2 "Fixed part" /*
*/ 3 "Conditional")) ytitle("Predicted probability")

and similarly for the random coefficient model; see Figures 9.8 and 9.9.

In Figure 9.8 it is clear that the marginal or population average
curve is flatter than the conditional or subject-specific curves. The
dotted curve for ui = 0 represents the curve of an average individual
since 0 is the mean of the random effects distribution. Note that this
curve of an average or typical individual differs from the population
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Figure 9.8: Marginal and conditional predicted probabilities for random
intercept model. The dotted curve is the conditional probability when
ui = 0.
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Figure 9.9: Conditional and marginal predicted probabilities for ran-
dom coefficient model. The dotted curve is the conditional probability
when ui = 0.
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average curve! In Figure 9.9, we can see how different the trajectories
for different patients can be in a random coefficient model. Again, the
curve of the average individual differs from the average curve. Although
the conditional predictions for the two models are quite different, the
marginal predictions are nearly the same as can be seen by plotting the
two marginal curves on the same graph:

twoway (line probm1 month) /*
*/ (line probm2 month, clpat(dash)), legend(order(1 /*
*/ "Random intercept" 2 "Random int. & slope")) /*
*/ ytitle("Marginal probability of thought disorder")/*
*/ ylabel(0(.2)1)

(see Figure 9.10). Here the ylabel() option was used to extend the y-
axis range to 1 and produce appropriate axis labels to make this graph
comparable with Figures 9.8 and 9.9.
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Figure 9.10: Marginal predicted probabilities for random intercept and
random coefficient models.

Note that gllamm can be used for a wide range of models with
random effects and other latent variables such as factors, including
(multilevel) structural equation models and latent class models with
many different response types as well as mixed responses (see Skron-
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dal and Rabe-Hesketh, 2003; 2004; Rabe-Hesketh et al., 2003; 2004a;
2004b). The webpage http://www.gllamm.org gives more references
and up-to-date information.

9.5 Exercises

1. For the depression data, run the random effects model using dif-
ferent estimation methods available for xtreg. (See the Stata Ref-
erence Manual [XT] xtreg for the interpretation of the fe and be
options.)

2. For the thought disorder data, produce graphs of the predicted
probabilities for the individual patients separately for early and late
onset (similar to Figures 9.2 and 9.6 for the post-natal depression
data). Hint: use gllapred with the mu option (not marg or us())
to obtain posterior mean probabilities.

3. Analyze the Australian school children data described in Chapter 7
using a Poisson model with a random intercept for each child and
compare the estimates with those of the negative binomial model
estimated in Section 7.3.4, where the exponentiated random in-
tercept (frailty) has a gamma distribution instead of a log-normal
distribution.

4. Analyze the chemotherapy data introduced in the next chapter us-
ing a random intercept model. Note that ordinary quadrature as
provided by xtpoisson does not work here, and you should use
gllamm with the adapt option (see Rabe-Hesketh et al., 2002).
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Chapter 10

Generalized Estimating

Equations: Epileptic

Seizures and

Chemotherapy

10.1 Introduction

In a clinical trial reported by Thall and Vail (1990), 59 patients with
epilepsy were randomized to groups receiving either the anti-epileptic
drug progabide or a placebo in addition to standard chemotherapy.
The number of seizures was counted over four two-week periods. In
addition, a baseline seizure rate was recorded for each patient, based
on the eight-week prerandomization seizure count. The age of each pa-
tient was also recorded. The main question of interest is whether the
treatment progabide reduces the frequency of epileptic seizures com-
pared with placebo. The data are shown in Table 10.1. (These data
also appear in Hand et al., 1994.)

Table 10.1 Data in epil.dta
subj id y1 y2 y3 y4 treat base age

1 104 5 3 3 3 0 11 31
2 106 3 5 3 3 0 11 30
3 107 2 4 0 5 0 6 25
4 114 4 4 1 4 0 8 36
5 116 7 18 9 21 0 66 22
6 118 5 2 8 7 0 27 29
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Table 10.1 Data in epil.dta (continued)
7 123 6 4 0 2 0 12 31
8 126 40 20 23 12 0 52 42
9 130 5 6 6 5 0 23 37

10 135 14 13 6 0 0 10 28
11 141 26 12 6 22 0 52 36
12 145 12 6 8 4 0 33 24
13 201 4 4 6 2 0 18 23
14 202 7 9 12 14 0 42 36
15 205 16 24 10 9 0 87 26
16 206 11 0 0 5 0 50 26
17 210 0 0 3 3 0 18 28
18 213 37 29 28 29 0 111 31
19 215 3 5 2 5 0 18 32
20 217 3 0 6 7 0 20 21
21 219 3 4 3 4 0 12 29
22 220 3 4 3 4 0 9 21
23 222 2 3 3 5 0 17 32
24 226 8 12 2 8 0 28 25
25 227 18 24 76 25 0 55 30
26 230 2 1 2 1 0 9 40
27 234 3 1 4 2 0 10 19
28 238 13 15 13 12 0 47 22
29 101 11 14 9 8 1 76 18
30 102 8 7 9 4 1 38 32
31 103 0 4 3 0 1 19 20
32 108 3 6 1 3 1 10 30
33 110 2 6 7 4 1 19 18
34 111 4 3 1 3 1 24 24
35 112 22 17 19 16 1 31 30
36 113 5 4 7 4 1 14 35
37 117 2 4 0 4 1 11 27
38 121 3 7 7 7 1 67 20
39 122 4 18 2 5 1 41 22
40 124 2 1 1 0 1 7 28
41 128 0 2 4 0 1 22 23
42 129 5 4 0 3 1 13 40
43 137 11 14 25 15 1 46 33
44 139 10 5 3 8 1 36 21
45 143 19 7 6 7 1 38 35
46 147 1 1 2 3 1 7 25
47 203 6 10 8 8 1 36 26
48 204 2 1 0 0 1 11 25
49 207 102 65 72 63 1 151 22
50 208 4 3 2 4 1 22 32
51 209 8 6 5 7 1 41 25
52 211 1 3 1 5 1 32 35
53 214 18 11 28 13 1 56 21
54 218 6 3 4 0 1 24 41
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Table 10.1 Data in epil.dta (continued)
55 221 3 5 4 3 1 16 32
56 225 1 23 19 8 1 22 26
57 228 2 3 0 1 1 25 21
58 232 0 0 0 0 1 13 36
59 236 1 4 3 2 1 12 37

10.2 Generalized estimating equations

In this chapter we consider an approach to the analysis of longitudinal
data that is very different from random effects modeling described in
the previous chapter. Instead of attempting to model the dependence
between responses on the same individuals as arising from between-
subject heterogeneity represented by random intercepts and possibly
slopes, we will concentrate on estimating the marginal mean structure,
treating the dependence as a nuisance.

10.2.1 Normally distributed responses

If we suppose that a normally distributed response is observed on each
individual at T time points, then the basic regression model for longi-
tudinal data becomes (cf. equation (3.3))

yi = Xiβ + εi, (10.1)

where y′
i = (yi1, yi2, · · · , yiT ), ε′ = (εi1, εi2, · · · , εiT ), Xi is a T × (p + 1)

design matrix, and β′ = (β0, · · · , βp) is a vector of regression param-
eters. The residual terms are assumed to have a multivariate normal
distribution with a covariance matrix of some particular form that is a
function of (hopefully) a small number of parameters. Maximum likeli-
hood estimation can be used to estimate both the parameters in (10.1)
and the parameters structuring the covariance matrix (details are given
in Jennrich and Schluchter, 1986). The latter are often not of primary
interest (they are often referred to as nuisance parameters), but using
a covariance matrix that fails to match that of the repeated measure-
ments can lead to invalid inferences about the parameters that are of
concern, namely the β in (10.1).

If each non-replicated element of the covariance matrix is treated as
a separate parameter, giving an unstructured covariance matrix, and if
there are no missing data, then this approach is essentially equivalent
to multivariate analysis of variance for longitudinal data (see Everitt,
2001). However, it is often more efficient to impose some meaningful
structure on the covariance matrix. The simplest (and most unrealis-
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tic) structure is independence with all off-diagonal elements (the covari-
ances) equal to zero, and typically all diagonal elements (the variances)
equal to each other. Another commonly used simple structure, known
as compound symmetry (for example, see Winer, 1971), requires that all
covariances are equal and all variances are equal. This is just the cor-
relation structure of a linear random intercept model described in the
previous chapter except that the random intercept model also requires
that the correlation be positive.

Other correlation structures include autoregressive structures where
the correlations decrease with the distance between time points. What-
ever the assumed correlation structure, all models may be estimated
by maximum likelihood.

10.2.2 Non-normal responses

Unfortunately, it is generally not straightforward to specify a multi-
variate model for non-normal responses. One solution, discussed in the
previous chapter, is to induce residual dependence among the responses
using random effects. An alternative approach is to give up the idea of
a model altogether by using generalized estimating equations (GEE) as
introduced by Liang and Zeger (1986). Generalized estimating equa-
tions are essentially a multivariate extension of the quasi-likelihood
approach discussed in Chapter 7 (see also Wedderburn, 1974). In GEE
the parameters are estimated using ‘estimating equations’ resembling
the score equations for maximum likelihood estimation of the linear
model described in the previous section. These estimating equations
only require specification of a link and variance function and a correla-
tion structure for the observed responses conditional on the covariates.
As in the quasi-likelihood approach, the parameters can be estimated
even if the specification does not correspond to any statistical model.

The regression coefficients represent marginal effects, i.e., they de-
termine the population average relationships. Liang and Zeger (1986)
show that the estimates of these coefficients are valid even when the
correlation structure is incorrectly specified. Correct inferences can be
obtained using robust estimates of the standard errors based on the
sandwich estimator for clustered data (e.g. Binder, 1983; Williams,
2000). The parameters of the correlation matrix, referred to as the
working correlation matrix, are treated as nuisance parameters. How-
ever, Lindsey and Lambert (1998) and Crouchley and Davies (1999)
point out that estimates are no longer consistent if ‘endogenous’ covari-
ates such as baseline responses are included in the model. Fortunately,
inclusion of the baseline response as a covariate does yield consistent es-
timates of treatment effects in clinical trial data such as the chemother-
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apy data considered here (see Crouchley and Davies, 1999) as long as
the model does not contain a baseline by treatment interaction.

There are some important differences between GEE and random
effects modeling. First, while random effects modeling is based on a
statistical model and typically maximum likelihood estimation, GEE
is just an estimation method that is not based on a statistical model.
Second, there is an important difference in the interpretation of the
regression coefficients. In random effects models, the regression coef-
ficients represent conditional or subject-specific effects for given values
of the random effects. For GEE, on the other hand, the regression co-
efficients represent marginal or population average effects. As we saw
in the thought disorder data in the previous chapter, conditional and
marginal relationships can be very different. Either may be of inter-
est; for instance patients are likely to want to know the subject-specific
effect of treatments, whereas health economists may be interested in
population average effects. Whereas random effects models allow the
marginal relationship to be derived, GEE does not allow derivation of
the conditional relationship. Note that condtional and marginal rela-
tionships are the same if an identity link is used and, in the case of
random intercept models (no random coefficients), if a log link is speci-
fied (see Diggle et al., 2002). Third, GEE is often preferred because, in
contrast to the random effects approach, the parameter estimates are
consistent even if the correlation structure is misspecified, although
this is only true if the mean structure is correctly specified. Fourth,
while maximum likelihood estimation of a correctly specified model is
consistent if data are missing at random (MAR), this is not the case for
GEE which requires that responses are missing completely at random
(MCAR). See Hardin and Hilbe (2002) for a thorough introduction to
GEE.

10.3 Analysis using Stata

The generalized estimating equations approach, as described in Liang
and Zeger (1986), is implemented in Stata’s xtgee command. The
main components which have to be specified are:

� the assumed distribution of the response variable, specified in
the family() option – this determines the variance function,

� the link between the response variable and its linear predictor,
specified in the link() option, and

� the structure of the working correlation matrix, specified in the
correlations() option.
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In general, it is not necessary to specify both family() and link()
since, as explained in Chapter 7, the default link is the canonical link
for the specified family.

Since the xtgee command will often be used with the family(gauss)
option, together with the identity link function, we will illustrate this
option on the post-natal depression data used in the previous two chap-
ters before moving on to deal with the data in Table 10.1.

10.3.1 Post-natal depression data

The data are obtained using

infile subj group dep0 dep1 dep2 dep3 dep4 dep5 dep6 /*
*/ using depress.dat

reshape long dep, i(subj) j(visit)
mvdecode _all, mv(-9)

To begin, we fit a model that regresses depression on group, visit,
their interaction and visit squared as in the previous chapter but
under the unrealistic assumptions of independence. The necessary in-
struction written out in its fullest form is

gen gr_vis = group*visit
gen vis2 = visit^2
xtgee dep group visit gr_vis vis2, i(subj) t(visit) /*

*/ corr(indep) link(iden) family(gauss)

(see Display 10.1). Here, the fitted model is simply a multiple regression
model for 295 observations which are assumed to be independent of one
another; the scale parameter is equal to the residual mean square, and
the deviance is equal to the residual sum of squares. The estimated re-
gression coefficients and their associated standard errors indicate that
the group by visit interaction is significant at the 5% level. How-
ever, treating the observations as independent is unrealistic and will
almost certainly lead to poor estimates of the standard errors. Stan-
dard errors for between-subject factors (here group) are likely to be
underestimated because we are treating observations from the same
subject as independent, thus increasing the apparent sample size; stan-
dard errors for within-subject factors (here visit, gr vis, and vis2)
are likely to be overestimated since we are not controlling for residual
between-subject variability.

We therefore now abandon the assumption of independence and
estimate a correlation matrix having compound symmetry (i.e., con-
straining the correlations between the observations at any pair of time
points to be equal). Such a correlational structure is specified using
corr(exchangeable), or the abbreviated form corr(exc). The model
can be fitted as follows:
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Iteration 1: tolerance = 3.543e-14

GEE population-averaged model Number of obs = 356
Group variable: subj Number of groups = 61
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.8
Correlation: independent max = 7

Wald chi2(4) = 269.51
Scale parameter: 26.89935 Prob > chi2 = 0.0000

Pearson chi2(356): 9576.17 Deviance = 9576.17
Dispersion (Pearson): 26.89935 Dispersion = 26.89935

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.506834 .9383647 -1.61 0.108 -3.345995 .3323274
visit -3.849465 .5091836 -7.56 0.000 -4.847447 -2.851483
gr_vis -.6090744 .277417 -2.20 0.028 -1.152802 -.0653471

vis2 .3904383 .079783 4.89 0.000 .2340665 .5468102
_cons 20.96533 .7826299 26.79 0.000 19.4314 22.49925

Display 10.1

xtgee dep group visit gr_vis vis2, i(subj) t(visit) /*
*/ corr(exc) link(iden) fam(gauss)

Instead of specifying the subject and time identifiers using the op-
tions i() and t(), we can also declare the data as being of the form
xt (for cross-sectional time series) as follows:

iis subj
tis visit

and omit the i() and t() options from now on. Since both the link
and the family correspond to the default options, the same analysis
may be carried out using the shorter command

xtgee dep group visit gr_vis vis2, corr(exc)

(see Display 10.2). After estimation, xtcorr reports the estimated
working correlation matrix

xtcorr

which is shown in Display 10.3.
Note that the standard error for group has increased whereas those

for visit, gr vis, and vis2 have decreased as expected. The esti-
mated within-subject correlation matrix is compound symmetric. This
structure is frequently not acceptable since correlations between pairs
of observations widely separated in time will often be lower than for
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Iteration 1: tolerance = .01567568
Iteration 2: tolerance = .00003608
Iteration 3: tolerance = 6.529e-08

GEE population-averaged model Number of obs = 356
Group variable: subj Number of groups = 61
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.8
Correlation: exchangeable max = 7

Wald chi2(4) = 421.11
Scale parameter: 26.92726 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.470155 1.162063 -1.27 0.206 -3.747756 .8074468
visit -3.785601 .3648345 -10.38 0.000 -4.500664 -3.070539
gr_vis -.5837938 .2040368 -2.86 0.004 -.9836985 -.183889

vis2 .3850221 .0559386 6.88 0.000 .2753845 .4946598
_cons 20.90907 .901082 23.20 0.000 19.14298 22.67516

Display 10.2

Estimated within-subj correlation matrix R:

c1 c2 c3 c4 c5 c6 c7
r1 1.0000
r2 0.5150 1.0000
r3 0.5150 0.5150 1.0000
r4 0.5150 0.5150 0.5150 1.0000
r5 0.5150 0.5150 0.5150 0.5150 1.0000
r6 0.5150 0.5150 0.5150 0.5150 0.5150 1.0000
r7 0.5150 0.5150 0.5150 0.5150 0.5150 0.5150 1.0000

.

Display 10.3
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observations closer together. This pattern was apparent from the scat-
terplot matrix given in Chapter 8.

To allow for a more complex pattern of correlations among the re-
peated observations, we can move to an autoregressive structure. For
example, in a first-order autoregressive specification the correlation be-
tween time points r and s is assumed to be ρ|r−s|. The necessary
instruction for fitting the previously considered model but with this
first-order autoregressive structure for the correlations is

xtgee dep group visit gr_vis vis2, corr(ar1)

Iteration 1: tolerance = .3759114
Iteration 2: tolerance = .01586983
Iteration 3: tolerance = .00037881
Iteration 4: tolerance = 8.875e-06
Iteration 5: tolerance = 2.078e-07

GEE population-averaged model Number of obs = 356
Group and time vars: subj visit Number of groups = 61
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.8
Correlation: AR(1) max = 7

Wald chi2(4) = 213.85
Scale parameter: 27.10248 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -.539061 1.277002 -0.42 0.673 -3.041938 1.963816
visit -4.061961 .4741241 -8.57 0.000 -4.991227 -3.132695
gr_vis -.7815801 .3332716 -2.35 0.019 -1.43478 -.1283796

vis2 .4207375 .0693395 6.07 0.000 .2848346 .5566404
_cons 21.10085 .9732406 21.68 0.000 19.19334 23.00837

Display 10.4

The estimates of the regression coefficients and their standard errors
in Display 10.4 have changed but not substantially. The estimated
within-subject correlation matrix may again be obtained using

xtcorr

(see Display 10.5) which has the expected pattern in which correla-
tions decrease substantially as the separation between the observations
increases.

Other correlation structures are available for xtgee, including the
option correlation(unstructured) in which no constraints are placed
on the correlations. (This is essentially equivalent to multivariate anal-
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Estimated within-subj correlation matrix R:

c1 c2 c3 c4 c5 c6 c7
r1 1.0000
r2 0.6475 1.0000
r3 0.4192 0.6475 1.0000
r4 0.2714 0.4192 0.6475 1.0000
r5 0.1757 0.2714 0.4192 0.6475 1.0000
r6 0.1138 0.1757 0.2714 0.4192 0.6475 1.0000
r7 0.0737 0.1138 0.1757 0.2714 0.4192 0.6475 1.0000

Display 10.5

ysis of variance for longitudinal data, except that the variance is as-
sumed to be constant over time.) It might appear that using this option
would be the most sensible one to choose for all data sets. This is not,
however, the case since it necessitates the estimation of many nuisance
parameters. This can, in some circumstances, cause problems in the
estimation of those parameters of most interest, particularly when the
sample size is small and the number of time points is large.

10.3.2 Chemotherapy data

We now analyze the chemotherapy data using a similar model as for
the depression data, but using the Poisson distribution and log link.
The data are available in a Stata file epil.dta and can be read using

use epil, clear

We will treat the baseline measure as one of the responses:

gen y0 = baseline

Some useful summary statistics can be obtained using

summarize y0 y1 y2 y3 y4 if treat==0

summarize y0 y1 y2 y3 y4 if treat==1

(see Displays 10.6 and 10.7).
The largest value of y1 in the progabide group seems out of step

with the other maximum values and may indicate an outlier. Some
graphics of the data may be useful for investigating this possibility
further, but first it is convenient to reshape the data from its present
‘wide’ form to the ‘long’ form. We now reshape the data as follows:

reshape long y, i(subj) j(visit)
sort subj treat visit
list in 1/12, clean
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Variable Obs Mean Std. Dev. Min Max

y0 28 30.78571 26.10429 6 111
y1 28 9.357143 10.13689 0 40
y2 28 8.285714 8.164318 0 29
y3 28 8.785714 14.67262 0 76
y4 28 7.964286 7.627835 0 29

Display 10.6

Variable Obs Mean Std. Dev. Min Max

y0 31 31.6129 27.98175 7 151
y1 31 8.580645 18.24057 0 102
y2 31 8.419355 11.85966 0 65
y3 31 8.129032 13.89422 0 72
y4 31 6.709677 11.26408 0 63

Display 10.7

subj visit y treat baseline age
1. 1 0 11 0 11 31
2. 1 1 5 0 11 31
3. 1 2 3 0 11 31
4. 1 3 3 0 11 31
5. 1 4 3 0 11 31
6. 2 0 11 0 11 30
7. 2 1 3 0 11 30
8. 2 2 5 0 11 30
9. 2 3 3 0 11 30
10. 2 4 3 0 11 30
11. 3 0 6 0 6 25
12. 3 1 2 0 6 25

Display 10.8
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(see Display 10.8).
Perhaps the most useful graphical display for investigating the data

is a set of graphs of individual response profiles. Since we are planning
to fit a Poisson model with the log link to the data, we take the log
transformation before plotting the response profiles. (We need to add
a positive number, say 1, because some seizure counts are zero.)

gen ly = log(y+1)

However, the baseline measure represents seizure counts over an 8-week
period, compared with 2-week periods for each of the other time points.
We therefore divide the baseline count by 4:

replace ly = log(y/4+1) if visit==0

and then plot the log-counts:

twoway connect ly visit if treat==0, by(subj, /*
*/ style(compact)) ytitle("Log count")

twoway connect ly visit if treat==1, by(subj, /*
*/ style(compact)) ytitle("Log count")
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Figure 10.1: Response profiles in placebo group.
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Figure 10.2: Response profiles in the treated group.

The resulting graphs are shown in Figures 10.1 and 10.2. There is
no obvious improvement in the progabide group. Subject 49 had more
epileptic fits overall than any other subject and could well be an outlier
(see Exercise 3).

As discussed in Chapter 7, the most plausible distribution for count
data is the Poisson distribution. The Poisson distribution is specified
in xtgee models using the option family(poisson). The log link is
implied (since it is the canonical link). The baseline counts were ob-
tained over an 8-week period whereas all subsequent counts are over
2-week periods. To model the seizure rate in counts per week, we must
therefore use the log observation period log(pi) as an offset (a covariate
with regression coefficient set to 1). The model for the mean count µij

then becomes

log(µij) = βTxij + log(pi),

so that the rate is modeled as

µij/pi = exp(βTxij).

We can compute the required offset using

© 2004 by CRC Press LLC 



gen lnobs = cond(visit==0,ln(8),ln(2))

Following Diggle et al. (2002), we will allow the log rate to change by
a treatment group-specific constant after the baseline assessment. The
necessary covariates, an indicator for the post-baseline visits and an
interaction between that indicator and treatment group, are created
using

gen post = visit>0
gen tr_post = treat*post

We will also control for the age of the patients. The summary tables for
the seizure data given on page 188 provide strong empirical evidence
that there is overdispersion (the variances are greater than the means),
and this can be incorporated using the scale(x2) option to allow the
dispersion parameter φ to be estimated (see also Chapter 7).

iis subj
xtgee y age treat post tr_post, corr(exc) family(pois) /*
*/ offset(lnobs) scale(x2)

Iteration 1: tolerance = .12201855
Iteration 2: tolerance = .00074577
Iteration 3: tolerance = 2.826e-06
Iteration 4: tolerance = 8.790e-11

GEE population-averaged model Number of obs = 295
Group variable: subj Number of groups = 59
Link: log Obs per group: min = 5
Family: Poisson avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(4) = 5.43
Scale parameter: 18.48008 Prob > chi2 = 0.2458

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0322513 .0148644 -2.17 0.030 -.061385 -.0031176
treat -.0177873 .201945 -0.09 0.930 -.4135922 .3780176
post .1107981 .1500635 0.74 0.460 -.183321 .4049173

tr_post -.1036807 .213317 -0.49 0.627 -.5217742 .3144129
_cons 2.265255 .4400816 5.15 0.000 1.402711 3.1278
lnobs (offset)

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 10.9

The output assuming an exchangeable correlation structure is given
in Display 10.9, and the estimated correlation matrix is obtained using
xtcorr.
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xtcorr

(see Display 10.10).

Estimated within-subj correlation matrix R:

c1 c2 c3 c4 c5
r1 1.0000
r2 0.7686 1.0000
r3 0.7686 0.7686 1.0000
r4 0.7686 0.7686 0.7686 1.0000
r5 0.7686 0.7686 0.7686 0.7686 1.0000

Display 10.10

In Display 10.9, the parameter φ is estimated as 18.5, indicating
severe overdispersion in these data. We briefly illustrate how important
it was to allow for overdispersion by omitting the scale(x2) option:

xtgee y age treat post tr_post, corr(exc) family(pois) /*
*/ offset(lnobs)

Iteration 1: tolerance = .12201855
Iteration 2: tolerance = .00074577
Iteration 3: tolerance = 2.826e-06
Iteration 4: tolerance = 8.790e-11

GEE population-averaged model Number of obs = 295
Group variable: subj Number of groups = 59
Link: log Obs per group: min = 5
Family: Poisson avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(4) = 100.38
Scale parameter: 1 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0322513 .0034578 -9.33 0.000 -.0390284 -.0254742
treat -.0177873 .0469765 -0.38 0.705 -.1098596 .074285
post .1107981 .0349079 3.17 0.002 .04238 .1792163

tr_post -.1036807 .0496219 -2.09 0.037 -.2009378 -.0064235
_cons 2.265255 .102372 22.13 0.000 2.06461 2.465901
lnobs (offset)

Display 10.11
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The results given in Display 10.11 show that the standard errors are
now much smaller than before. Even if overdispersion had not been
suspected, this error could have been detected by using the robust
option (see Chapter 7):

xtgee y age treat post tr_post, corr(exc) family(pois) /*
*/ offset(lnobs) robust

Iteration 1: tolerance = .12201855
Iteration 2: tolerance = .00074577
Iteration 3: tolerance = 2.826e-06
Iteration 4: tolerance = 8.790e-11

GEE population-averaged model Number of obs = 295
Group variable: subj Number of groups = 59
Link: log Obs per group: min = 5
Family: Poisson avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(4) = 6.85
Scale parameter: 1 Prob > chi2 = 0.1442

(standard errors adjusted for clustering on subj)

Semi-robust
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0322513 .0148746 -2.17 0.030 -.0614049 -.0030976
treat -.0177873 .216051 -0.08 0.934 -.4412395 .4056649
post .1107981 .1170963 0.95 0.344 -.1187064 .3403027

tr_post -.1036807 .2154436 -0.48 0.630 -.5259424 .3185811
_cons 2.265255 .4371124 5.18 0.000 1.408531 3.12198
lnobs (offset)

Display 10.12

The results of the robust regression in Display 10.12 are remarkably
similar to those of the overdispersed Poisson model, suggesting that
the latter is a reasonable ‘model’ for the data.

The estimated coefficient of tr post describes the difference in the
change in log seizure rate from baseline to post randomization between
the placebo and progabide groups. The small negative value indicates
that the treatment is a little more effective than the placebo in re-
ducing the seizure rate, although this is not at all significant. The
exponentiated coefficient gives an incidence rate ratio, here the ratio of
the relative reduction in seizure rate for the treated patients compared
with the control patients. The exponentiated coefficient and the corre-
sponding confidence interval can be obtained directly using the eform
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option in xtgee:

xtgee y age treat post tr_post, corr(exc) /*
*/ family(pois) offset(lnobs) scale(x2) eform

Iteration 1: tolerance = .12201855
Iteration 2: tolerance = .00074577
Iteration 3: tolerance = 2.826e-06
Iteration 4: tolerance = 8.790e-11

GEE population-averaged model Number of obs = 295
Group variable: subj Number of groups = 59
Link: log Obs per group: min = 5
Family: Poisson avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(4) = 5.43
Scale parameter: 18.48008 Prob > chi2 = 0.2458

y IRR Std. Err. z P>|z| [95% Conf. Interval]

age .9682632 .0143927 -2.17 0.030 .9404611 .9968873
treat .98237 .1983847 -0.09 0.930 .6612706 1.459389
post 1.117169 .1676464 0.74 0.460 .8325009 1.499179

tr_post .9015131 .192308 -0.49 0.627 .5934667 1.369455
lnobs (offset)

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 10.13

The results in Display 10.13 indicate that the relative reduction in
seizure rate is 10% greater in the treated group compared with the
control group, with a 95% confidence interval from a 41% reduction to
a 37% increase.

However, before interpreting these estimates, we should perform
some diagnostics. Standardized Pearson residuals can be useful for
identifying potential outliers (see equation (7.9)). These can be found
by first using the predict command to obtain predicted counts, sub-
tracting the observed counts, and dividing by the estimated standard

deviation
√

φ̂µij, where φ̂ is the estimated dispersion parameter:

quietly xtgee y treat baseline age visit, corr(exc) /*
*/ family(pois) scale(x2)

predict pred, mu
gen pres = (y-pred)/sqrt(e(chi2_dis)*pred)

Boxplots of these residuals at each visit are obtained using
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sort visit
graph box stpres, medtype(line) over(visit, /*
*/ relabel(1 "visit 1" 2 "visit 2" 3 "visit 3" /*
*/ 4 "visit 4"))

The resulting graph is shown in Figure 10.3. Pearson residuals greater
−

2
0

2
4

6
8

0 1 2 3 4

Figure 10.3: Standardized Pearson residuals.

than 4 are certainly a cause for concern, so we can check which subjects
they belong to using

list subj id if stpres>4

subj id

41. 49 207
96. 49 207

176. 49 207
178. 49 207
185. 25 227

292. 49 207
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Subject 49 appears to be an outlier due to extremely large counts as
we saw in Figure 10.2. Subject 25 also has an unusually large count at
visit 3. It would be a good idea to repeat the analysis without subject
49 to see how much the results are affected by this unusual subject (see
Exercise 3). This can be viewed as a sensitivity analysis.

10.4 Exercises

1. For the depression data, compare the result of GEE with a com-
pound symmetric structure with ordinary linear regression where
standard errors are corrected for the within-subject correlation us-
ing:
a. the options, robust cluster(subj), to obtain the sandwich

estimator for clustered data (see help for regress), and
b. bootstrapping, by sampling subjects with replacement, not ob-

servations. This may be achieved using the bs command, to-
gether with the option cluster(subj).

2. Explore other possible correlational structures for the seizure data
in the context of a Poisson model. Examine the robust standard
errors in each case.

3. Investigate what Poisson models are most suitable when subject 49
is excluded from the analysis.

4. For the thought disorder data discussed in the previous chapter,
estimate the effect of early, month and their interaction on the logit
of thought disorder assuming an exchangeable correlation structure.
Plot the predicted probability for early onset women (using graph
twoway function, see Section 6.3.2), and compare the curve with
the curves in Figure 9.10.
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Chapter 11

Some Epidemiology

11.1 Description of data

This chapter illustrates analysis of different epidemiological designs,
namely cohort studies and matched as well as unmatched case-control
studies. Four datasets will be used which are presented in the form
of cross-tabulations in Tables 11.1 to 11.4. (Tables 11.1 and 11.4 are
taken from Clayton and Hills (1993) with permission of their publisher,
Oxford University Press.)

The data in Table 11.1 result from a cohort study which investigated
the relationship between diet and ischemic heart disease (IHD). Here we
consider low energy intake as a risk factor since it is highly associated
with lack of physical exercise. The table gives frequencies of IHD by
ten-year age-band and exposure to a high or low calorie diet. The total
person-years of observation are also given for each cell.

The dataset in Table 11.2 is the result of a case-control study in-
vestigating whether keeping a pet bird is a risk factor for lung cancer.
This dataset is given in Hand et al. (1994).

The datasets in Tables 11.3 and 11.4 are from matched case-control
studies, the first with a single matched control and the second with
three matched controls. Table 11.3 arises from a matched case-control
study of endometrial cancer where cases were matched on age, race,
date of admission, and hospital of admission to a suitable control not
suffering from cancer. Past exposure to conjugated estrogens was de-
termined. The dataset is described in Everitt (1994). Finally, the
data in Table 11.4, described in Clayton and Hills (1993), arise from a
case-control study of breast cancer screening. Women who had died of
breast cancer were matched with three control women. The screening
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history of each control was assessed over the period up to the time of
diagnosis of the matched case.

11.2 Introduction to epidemiology

Epidemiology can be described as the study of diseases in populations,
in particular the search for causes of disease. For ethical reasons, sub-
jects cannot be randomized to possible risk factors in order to establish
whether these are associated with an increase in the incidence of dis-
ease, and therefore epidemiology is based on observational studies. The
most important types of studies in epidemiology are cohort studies and
case-control studies. We will give a very brief description of the design
and analysis of these two types of studies, following closely the expla-
nations and notation given in the excellent book, Statistical Models in
Epidemiology by Clayton and Hills (1993).

11.2.1 Cohort studies

In a cohort study, a group of subjects free of the disease is followed up,
and the presence of risk factors as well as the occurrence of the disease
of interest are recorded. This design is illustrated in Figure 11.1. An

Cohort
free of
disease
2000

100 with
disease

1900 without
disease

�������������������

�������������������

Now � Future

Figure 11.1: Cohort study.
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Table 11.1 Number of IHD cases and
person-years of observation by age and

exposure to low energy diet

Exposed Unexposed
< 2750 kcal ≥ 2750 kcal

Age Cases Pers-yrs Cases Pers-yrs
40-49 2 311.9 4 607.9
50-59 12 878.1 5 1272.1
60-69 14 667.5 8 888.9

Table 11.2 Number of lung
cancer cases and controls who

keep a pet bird

Kept pet birds Cases Controls
Yes 98 101
No 141 328
Total 239 429

Table 11.3 Frequency of
exposure to oral conjugated
estrogens among cases of

endometrial cancer and their
matched controls

Controls
+ - Total

Cases + 12 43 55
- 7 121 128

Total 19 164 183

Table 11.4 Screening history in
subjects who died of breast

cancer and 3 matched controls

Number of
controls screened

Status of the case 0 1 2 3
Screened 1 4 3 1
Unscreened 11 10 12 4

© 2004 by CRC Press LLC 



example of a cohort study is the study described in the previous section
where subjects were followed up to monitor the occurrence of ischemic
heart disease in two risk groups, those with high and low energy intake,
giving the results in Table 11.1.

The incidence rate of the disease λ may be estimated by the num-
ber of new cases of the disease D during a time interval divided by
the person-time of observation Y , the sum of all subjects’ periods of
observation during the time interval:

λ̂ =
D

Y
.

This is the maximum likelihood estimator of λ assuming that D fol-
lows a Poisson distribution (independent events occurring at a constant
probability rate in continuous time) with mean λY .

The most important quantity of interest in a cohort study is the
incidence rate ratio (or relative risk), the ratio λ1/λ0 of incidence rates
for those exposed to a risk factor and those not exposed to the risk
factor (subscripts 1 and 0 denote exposed and unexposed, respectively).
The incidence rate ratio may be estimated by

θ̂ =
D1/Y1

D0/Y0

.

This estimator can be derived by maximizing the conditional (binomial)
likelihood that there were D1 cases in the exposed group conditional
on there being a total of D = D0 + D1 cases.

However, a potential problem in estimating this rate ratio is con-
founding arising from systematic differences in prognostic factors be-
tween the exposure groups. This problem can be dealt with by dividing
the cohort into groups or strata according to prognostic factors and as-
suming that the rate ratio for exposed and unexposed subjects is the
same across strata. If there are Ds cases and Y s person-years of ob-
servation in stratum s, then the common rate ratio may be estimated
using the method of Mantel and Haenszel by

θ̂MH =
∑

s Ds
1Y

s
0 /Y s

∑
s Ds

0Y
s
1 /Y s

.

Note that the strata might not correspond to groups of subjects. For
example, if the confounder is age, subjects who cross from one age-
band into the next during the study contribute parts of their periods of
observation to different strata. This is how Table 11.1 was constructed.

A more general way of controlling for confounding variables is to
use Poisson regression to model the number of occurrences of disease
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or ‘failures’. Such an approach allows inclusion of several covariates.
The complexity of the model can be decided by model selection crite-
ria, often leading to smoothing through the omission of higher order
interactions. If a log link is used, the expected number of failures can
be made proportional to the person-years of observation by adding the
log of the person-years of observation to the linear predictor as an offset
(an explanatory variable with regression coefficient set to 1), giving

log[E(D)] = log(Y ) + βT x.

Exponentiating the equation and dividing by Y gives

E(D)
Y

= exp(βT x)

as required.

11.2.2 Case-control studies

If the incidence rate of a disease is small, a cohort study requires a
large number of person-years of observation making it very expensive.
A more feasible type of study in this situation is a case-control study
in which cases of the disease of interest are compared with non-cases,
often called controls, with respect to exposure to possible risk factors in
the past. The basic idea of case-control studies is shown in Figure 11.2.
The assumption here is that the probability of selection into the study
is independent of the exposures of interest. The data in Table 11.2
derive from a case-control study in which cases with lung cancer and
healthy controls were interviewed to ascertain whether they had been
‘exposed’ to a pet bird.

Let D and H be the number of cases and controls, respectively, and
let the subscripts 0 and 1 denote ‘unexposed’ and ‘exposed’. Since the
proportion of cases was determined by the design, it is not possible to
estimate the relative risk of disease between exposed and nonexposed
subjects. However, the odds of exposure in the cases or controls can
be estimated, and the ratio of these odds is equal to the odds ratio of
being a case in the exposed group compared with the unexposed group

D1/D0

H1/H0

=
D1/H1

D0/H0

.

We model the (log) odds of being a case using logistic regression with
the exposure as an explanatory variable. Then the coefficient of the
exposure variable is an estimate of the desired log odds ratio even
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Figure 11.2: Case-control study.

though the estimate of the odds itself (reflected by the constant) is
determined by the proportion of cases in the study. Logistic regression
is the most popular method for estimating adjusted odds ratios for risk
factors of interest, controlling for confounding variables.

11.2.3 Matched case-control studies

A major difficulty with case-control studies is to find suitable controls
who are similar enough to the cases (so that differences in exposure
can reasonably be assumed to be due to their association with the
disease) without being overmatched, which can result in very similar
exposure patterns. The problem of finding controls who are sufficiently
similar is often addressed by matching controls individually to cases
according to important variables such as age and sex. Examples of
such matched case-control studies are given in Tables 11.3 and 11.4. In
the screening study, matching had the following additional advantage
noted in Clayton and Hills (1993). The screening history of controls
could be determined by considering only the period up to the diagnosis
of the case, ensuring that cases did not have a decreased opportunity
for screening because they would not have been screened after their
diagnosis.

The statistical analysis has to take account of the matching. Two
methods of analysis are McNemar’s test in the simple case of 2 × 2
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tables and conditional logistic regression in the case of several controls
per case and/or several explanatory variables. Since the case-control
sets have been matched on variables that are believed to be associated
with disease status, the sets can be thought of as strata with subjects in
one stratum having higher or lower odds of being a case than those in
another after controlling for the exposures. A logistic regression model
would have to accommodate these differences by including a parameter
αc for each case-control set c, so that the log odds of being a case for
subject i in case-control set c would be

log(Ωci) = log(αc) + βT xi. (11.1)

However, this would result in too many parameters to be estimated
(the incidental parameter problem). Furthermore, the parameters αc

are of no interest to us.
In conditional logistic regression, the nuisance parameters αc are

eliminated as follows. In a 1:1 matched case-control study, ignoring
the fact that each set has one case, the probability that subject 1 in
the set is a case and subject 2 is a noncase is

Pr(1) =
Ωc1

1 + Ωc1

× 1
1 + Ωc2

,

and the probability that subject 1 is a noncase and subject 2 is a case
is

Pr(2) =
1

1 + Ωc1

× Ωc2

1 + Ωc2

.

However, conditional on there being one case in a set, the probability
of subject 1 being the case is simply

Pr(1)
Pr(1) + Pr(2)

= Ωc1/(Ωc1 + Ωc2) =
exp(βT x1)

exp(βT x1) + exp(βTx2)
, (11.2)

since αc cancels out; see equation (11.1). The expression on the right-
hand side of equation (11.2) is the contribution of a single case-control
set to the conditional likelihood of the sample. Similarly, it can be
shown that if there are k controls per case and the subjects within
each case-control set are labeled 1 for the case and 2 to k + 1 for the
controls then the log likelihood becomes

∑
c

log

(
exp(βT x1)∑k+1

i=1 exp(βTxi)

)
.
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11.3 Analysis using Stata

11.3.1 Cohort study

There is a collection of instructions in Stata, the epitab commands,
that may be used to analyze small tables in epidemiology. These com-
mands either refer to variables in an existing dataset or can take cell
counts as arguments (i.e., they are immediate commands; see Chapter
1).

The first cohort dataset in Table 11.1 is given in a file as tabulated
and may be read using

infile str5 age num1 py1 num0 py0 using ihd.dat,clear
gen agegr=_n
reshape long num py, i(agegr) j(exposed)

Ignoring age, the incidence rate ratio may be estimated using

ir num exposed py

giving the table in Display 11.1. The incidence rate ratio of ischemic

exposed
Exposed Unexposed Total

num 28 17 45
py 1857 2769 4626

Incidence Rate .0150781 .0061394 .0097276

Point estimate [95% Conf. Interval]

Inc. rate diff. .0089387 .0026372 .0152401
Inc. rate ratio 2.455954 1.298154 4.782555 (exact)
Attr. frac. ex. .5928262 .2296752 .7909067 (exact)
Attr. frac. pop .3688696

(midp) Pr(k>=28) = 0.0016 (exact)
(midp) 2*Pr(k>=28) = 0.0031 (exact)

Display 11.1

heart disease, comparing low energy with high energy intake, is esti-
mated as 2.46 with a 95% confidence interval from 1.29 to 4.78. (Note
that we could report the reciprocals of these figures if we wished to
consider high energy intake as the risk factor.) The terms (exact)
imply that the confidence intervals are exact (no approximation was
used).
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Controlling for age using the epitab command

ir num exposed py, by(age)

(see Display 11.2) gives very similar estimates as shown in the row

age IRR [95% Conf. Interval] M-H Weight

40-49 .974359 .0881386 6.798632 1.356522 (exact)
50-59 3.476993 1.14023 12.59828 2.04186 (exact)
60-69 2.328967 .9118074 6.407519 3.432241 (exact)

Crude 2.455954 1.298154 4.782555 (exact)
M-H combined 2.403126 1.306459 4.420356

Test of homogeneity (M-H) chi2(2) = 1.57 Pr>chi2 = 0.4554

Display 11.2

labeled M-H combined (the Mantel-Haenszel estimate).
Another way of controlling for age is to carry out Poisson regression

with the log of py as an offset. The exponentiated offset py may be
specified using the exposure(py) option:

xi: poisson num exposed i.age, exposure(py) irr

(see Display 11.3) showing that there is an estimated age-adjusted in-

i.age _Iage_1-3 (_Iage_1 for age==40-49 omitted)

Iteration 0: log likelihood = -11.899364
Iteration 1: log likelihood = -11.898229
Iteration 2: log likelihood = -11.898228

Poisson regression Number of obs = 6
LR chi2(3) = 12.91
Prob > chi2 = 0.0048

Log likelihood = -11.898228 Pseudo R2 = 0.3516

num IRR Std. Err. z P>|z| [95% Conf. Interval]

exposed 2.386096 .7350226 2.82 0.005 1.304609 4.364108
_Iage_2 1.137701 .5408325 0.27 0.786 .4481154 2.888461
_Iage_3 1.997803 .9218379 1.50 0.134 .8086976 4.935362

py (exposure)

Display 11.3
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cidence rate ratio of 2.39 with a 95% confidence interval from 1.30 to
4.36. The coefficients of Iage 2 and Iage 3 show that the incidence
increases with age (although the rate ratios for adjacent age groups are
not significant) as would be expected. Another way of achieving the
same result is using glm with the lnoffset() option

xi: glm num exposed i.age, fam(poisson) link(log) /*
*/ lnoffset(lpy) eform

where the eform option is used to obtain exponentiated coefficients
(incidence rate ratios intead of their logarithms). An advantage of this
modeling approach is that we can investigate the possibility of an in-
teraction between exposed and age. If there were more age categories,
we could attempt to model the effect of age as a smooth function.

11.3.2 Case-control study

We will analyze the case-control study using the ‘immediate’ command
cci. The following notation is used for cci:

Exposed Unexposed
Cases a b
Noncases c d

where the quantities a, b, etc. in the table are specified in alphabetical
order, i.e.,

cci a b c d

(See help epitab for the arguments required for other immediate
epitab commands.) The bird data may therefore be analyzed as follows:

cci 98 141 101 328

giving the output in Display 11.4. The odds ratio of lung cancer, com-
paring those with pet birds with those without pet birds, is estimated
as 2.26 with an exact 95% confidence interval from 1.58 to 3.22. The
p-value for the null hypothesis of no association between pet birds and
lung cancer is < 0.001. This p-value is based on a chi-squared test; an
exact p-value could be obtained using the exact option.

11.3.3 Matched case-control studies

The matched case-control study with one control per case may be ana-
lyzed using the immediate command mcci which requires four numbers
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Proportion
Exposed Unexposed Total Exposed

Cases 98 141 239 0.4100
Controls 101 328 429 0.2354

Total 199 469 668 0.2979

Point estimate [95% Conf. Interval]

Odds ratio 2.257145 1.580935 3.218756 (exact)
Attr. frac. ex. .5569624 .367463 .689321 (exact)
Attr. frac. pop .2283779

chi2(1) = 22.37 Pr>chi2 = 0.0000

Display 11.4

a to d defined as in Table 11.3 where the columns are exposed and un-
exposed controls wheareas the rows are exposed and unexposed cases:

mcci 12 43 7 121

The results in Display 11.5 suggest that there is an increased odds of
endometrial cancer in subjects exposed to oral conjugated estrogens
(odds ratio = 2.89, 95% confidence interval from 1.89 to 4.44).

Controls
Cases Exposed Unexposed Total

Exposed 12 43 55
Unexposed 7 121 128

Total 19 164 183

McNemar’s chi2(1) = 25.92 Prob > chi2 = 0.0000
Exact McNemar significance probability = 0.0000

Proportion with factor
Cases .3005464
Controls .1038251 [95% Conf. Interval]

difference .1967213 .1210924 .2723502
ratio 2.894737 1.885462 4.444269
rel. diff. .2195122 .1448549 .2941695

odds ratio 6.142857 2.739772 16.18458 (exact)

Display 11.5
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The matched case-control study with three controls per case cannot
be analyzed using epitab. Instead, we will use conditional logistic
regression. We need to convert the data in Table 11.4 into the form
required for conditional logistic regression; that is, one observation per
subject (including cases and controls); an indicator variable, cancer,
for cases; another indicator variable, screen, for screening and a third
variable, caseid, an identifier for each case-control set of four women.

First, read the data which are in the form shown in Table 11.4.
Then transpose the data so that the first column contains frequencies
for unscreened cases (variable ncases0) and the second for screened
cases (variable ncases1).

infile v1-v4 using screen.dat,clear
gen str8 _varname= cond(_n==1,"ncases1","ncases0")
xpose, clear

The four rows in this transposed dataset correspond to 0, 1, 2, and
3 matched controls who have been screened. We will define a vari-
able nconstr taking on these four values. We can then stack the two
columns into a single variable ncases and create an indicator casescr
for whether or not the case was screened using the reshape command:

gen nconscr=_n-1
reshape long ncases, i(nconscr) j(casescr)
list

(see Display 11.6). The next step is to replicate each of the records

nconscr casescr ncases

1. 0 0 11
2. 0 1 1
3. 1 0 10
4. 1 1 4
5. 2 0 12

6. 2 1 3
7. 3 0 4
8. 3 1 1

Display 11.6

ncases times so that we have one record per case-control set. Then
define the variable caseid, and expand the dataset four times in order
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to have one record per subject. The four subjects within each case-
control set are arbitrarily labeled 0 to 3 in the variable control where
0 stands for ‘the case’ and 1, 2, and 3 for the controls.

expand ncases
sort casescr nconscr
gen caseid=_n
expand 4
quietly bysort caseid: gen control=_n-1
list in 1/8

(see Display 11.7). Now screen, the indicator whether a subject was

nconscr casescr ncases caseid control

1. 0 0 11 1 0
2. 0 0 11 1 1
3. 0 0 11 1 2
4. 0 0 11 1 3
5. 0 0 11 2 0

6. 0 0 11 2 1
7. 0 0 11 2 2
8. 0 0 11 2 3

Display 11.7

screened, is defined to be 0 except for the cases who were screened
and for as many controls as were screened according to nconscr. The
variable cancer is 1 for cases and 0 otherwise.

gen screen=0
replace screen=1 if control==0&casescr==1 /* the case */
replace screen=1 if control==1&nconscr>0
replace screen=1 if control==2&nconscr>1
replace screen=1 if control==3&nconscr>2
gen cancer=control==0

We can reproduce Table 11.4 by temporarily collapsing the data
(using preserve and restore to revert to the original data) as follows:

preserve
collapse (sum) screen (mean) casescr , by(caseid)
gen nconscr=screen-casescr
tabulate casescr nconscr
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restore

(see Display 11.8).

(mean) nconscr
casescr 0 1 2 3 Total

0 11 10 12 4 37
1 1 4 3 1 9

Total 12 14 15 5 46

Display 11.8

We are now ready to carry out conditional logistic regression:

clogit cancer screen, group(caseid) or

(see Display 11.9). Screening therefore seems to be protective of death

Iteration 0: log likelihood = -62.404527
Iteration 1: log likelihood = -59.212727
Iteration 2: log likelihood = -59.18163
Iteration 3: log likelihood = -59.181616

Conditional (fixed-effects) logistic regression Number of obs = 184
LR chi2(1) = 9.18
Prob > chi2 = 0.0025

Log likelihood = -59.181616 Pseudo R2 = 0.0719

cancer Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

screen .2995581 .1278367 -2.82 0.005 .1297866 .6914043

Display 11.9

from breast cancer, reducing the odds to about a third (95% confidence
interval from 0.13 to 0.69).

11.4 Exercises

1. Carry out conditional logistic regression to estimate the odds ratio
for the data in Table 11.3. The data are given in the same form as

© 2004 by CRC Press LLC 



in the table in a file called estrogen.dat.
2. For the data ihd.dat, use the command iri to calculate the inci-

dence rate ratio for IHD without controlling for age.
3. Again for data in ihd.dat, use Poisson regression to test whether

the effect of exposure on incidence of IHD differs between age
groups.
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Chapter 12

Survival Analysis:

Retention of Heroin

Addicts in Methadone

Maintenance Treatment

12.1 Description of data

The data to be analyzed in this chapter are on 131 heroin addicts in two
different clinics receiving methadone maintenance treatment to help
them overcome their addiction. Early dropout is an important problem
with this treatment. We will therefore analyze the time from admission
to termination of treatment (in days), given as time in Table 12.1.
For patients still in treatment when these data were collected, time is
the time from admission to the time of data collection. The variable
status is an indicator for whether time refers to dropout (1) or end
of study (0). Possible explanatory variables for retention in treatment
are maximum methadone dose and a prison record as well as which of
two clinics the addict was treated in. These variables are called dose,
prison, and clinic, respectively. The data were first analyzed by
Caplehorn and Bell (1991) and also appear in Hand et al. (1994).

Table 12.1 Data in heroin.dat
id clinic status time prison dose id clinic status time prison dose
1 1 1 428 0 50 132 2 0 633 0 70
2 1 1 275 1 55 133 2 1 661 0 40
3 1 1 262 0 55 134 2 1 232 1 70
4 1 1 183 0 30 135 2 1 13 1 60
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Table 12.1 Data in heroin.dat (continued)
id clinic status time prison dose id clinic status time prison dose
5 1 1 259 1 65 137 2 0 563 0 70
6 1 1 714 0 55 138 2 0 969 0 80
7 1 1 438 1 65 143 2 0 1052 0 80
8 1 0 796 1 60 144 2 0 944 1 80
9 1 1 892 0 50 145 2 0 881 0 80

10 1 1 393 1 65 146 2 1 190 1 50
11 1 0 161 1 80 148 2 1 79 0 40
12 1 1 836 1 60 149 2 0 884 1 50
13 1 1 523 0 55 150 2 1 170 0 40
14 1 1 612 0 70 153 2 1 286 0 45
15 1 1 212 1 60 156 2 0 358 0 60
16 1 1 399 1 60 158 2 0 326 1 60
17 1 1 771 1 75 159 2 0 769 1 40
18 1 1 514 1 80 160 2 1 161 0 40
19 1 1 512 0 80 161 2 0 564 1 80
21 1 1 624 1 80 162 2 1 268 1 70
22 1 1 209 1 60 163 2 0 611 1 40
23 1 1 341 1 60 164 2 1 322 0 55
24 1 1 299 0 55 165 2 0 1076 1 80
25 1 0 826 0 80 166 2 0 2 1 40
26 1 1 262 1 65 168 2 0 788 0 70
27 1 0 566 1 45 169 2 0 575 0 80
28 1 1 368 1 55 170 2 1 109 1 70
30 1 1 302 1 50 171 2 0 730 1 80
31 1 0 602 0 60 172 2 0 790 0 90
32 1 1 652 0 80 173 2 0 456 1 70
33 1 1 293 0 65 175 2 1 231 1 60
34 1 0 564 0 60 176 2 1 143 1 70
36 1 1 394 1 55 177 2 0 86 1 40
37 1 1 755 1 65 178 2 0 1021 0 80
38 1 1 591 0 55 179 2 0 684 1 80
39 1 0 787 0 80 180 2 1 878 1 60
40 1 1 739 0 60 181 2 1 216 0 100
41 1 1 550 1 60 182 2 0 808 0 60
42 1 1 837 0 60 183 2 1 268 1 40
43 1 1 612 0 65 184 2 0 222 0 40
44 1 0 581 0 70 186 2 0 683 0 100
45 1 1 523 0 60 187 2 0 496 0 40
46 1 1 504 1 60 188 2 1 389 0 55
48 1 1 785 1 80 189 1 1 126 1 75
49 1 1 774 1 65 190 1 1 17 1 40
50 1 1 560 0 65 192 1 1 350 0 60
51 1 1 160 0 35 193 2 0 531 1 65
52 1 1 482 0 30 194 1 0 317 1 50
53 1 1 518 0 65 195 1 0 461 1 75
54 1 1 683 0 50 196 1 1 37 0 60
55 1 1 147 0 65 197 1 1 167 1 55
57 1 1 563 1 70 198 1 1 358 0 45
58 1 1 646 1 60 199 1 1 49 0 60
59 1 1 899 0 60 200 1 1 457 1 40
60 1 1 857 0 60 201 1 1 127 0 20
61 1 1 180 1 70 202 1 1 7 1 40
62 1 1 452 0 60 203 1 1 29 1 60
63 1 1 760 0 60 204 1 1 62 0 40
64 1 1 496 0 65 205 1 0 150 1 60
65 1 1 258 1 40 206 1 1 223 1 40
66 1 1 181 1 60 207 1 0 129 1 40
67 1 1 386 0 60 208 1 0 204 1 65
68 1 0 439 0 80 209 1 1 129 1 50
69 1 0 563 0 75 210 1 1 581 0 65
70 1 1 337 0 65 211 1 1 176 0 55
71 1 0 613 1 60 212 1 1 30 0 60
72 1 1 192 1 80 213 1 1 41 0 60
73 1 0 405 0 80 214 1 0 543 0 40
74 1 1 667 0 50 215 1 0 210 1 50
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Table 12.1 Data in heroin.dat (continued)
id clinic status time prison dose id clinic status time prison dose
75 1 0 905 0 80 216 1 1 193 1 70
76 1 1 247 0 70 217 1 1 434 0 55
77 1 1 821 0 80 218 1 1 367 0 45
78 1 1 821 1 75 219 1 1 348 1 60
79 1 0 517 0 45 220 1 0 28 0 50
80 1 0 346 1 60 221 1 0 337 0 40
81 1 1 294 0 65 222 1 0 175 1 60
82 1 1 244 1 60 223 2 1 149 1 80
83 1 1 95 1 60 224 1 1 546 1 50
84 1 1 376 1 55 225 1 1 84 0 45
85 1 1 212 0 40 226 1 0 283 1 80
86 1 1 96 0 70 227 1 1 533 0 55
87 1 1 532 0 80 228 1 1 207 1 50
88 1 1 522 1 70 229 1 1 216 0 50
89 1 1 679 0 35 230 1 0 28 0 50
90 1 0 408 0 50 231 1 1 67 1 50
91 1 0 840 0 80 232 1 0 62 1 60
92 1 0 148 1 65 233 1 0 111 0 55
93 1 1 168 0 65 234 1 1 257 1 60
94 1 1 489 0 80 235 1 1 136 1 55
95 1 0 541 0 80 236 1 0 342 0 60
96 1 1 205 0 50 237 2 1 41 0 40
97 1 0 475 1 75 238 2 0 531 1 45
98 1 1 237 0 45 239 1 0 98 0 40
99 1 1 517 0 70 240 1 1 145 1 55

100 1 1 749 0 70 241 1 1 50 0 50
101 1 1 150 1 80 242 1 0 53 0 50
102 1 1 465 0 65 243 1 0 103 1 50
103 2 1 708 1 60 244 1 0 2 1 60
104 2 0 713 0 50 245 1 1 157 1 60
105 2 0 146 0 50 246 1 1 75 1 55
106 2 1 450 0 55 247 1 1 19 1 40
109 2 0 555 0 80 248 1 1 35 0 60
110 2 1 460 0 50 249 2 0 394 1 80
111 2 0 53 1 60 250 1 1 117 0 40
113 2 1 122 1 60 251 1 1 175 1 60
114 2 1 35 1 40 252 1 1 180 1 60
118 2 0 532 0 70 253 1 1 314 0 70
119 2 0 684 0 65 254 1 0 480 0 50
120 2 0 769 1 70 255 1 0 325 1 60
121 2 0 591 0 70 256 2 1 280 0 90
122 2 0 769 1 40 257 1 1 204 0 50
123 2 0 609 1 100 258 2 1 366 0 55
124 2 0 932 1 80 259 2 0 531 1 50
125 2 0 932 1 80 260 1 1 59 1 45
126 2 0 587 0 110 261 1 1 33 1 60
127 2 1 26 0 40 262 2 1 540 0 80
128 2 0 72 1 40 263 2 0 551 0 65
129 2 0 641 0 70 264 1 1 90 0 40
131 2 0 367 0 70 266 1 1 47 0 45

The data can be described as survival data, although the ‘endpoint’
is not death in this case, but dropout from treatment. From engineering
applications, another commonly used term for the endpoint is ‘failure’.
Duration or survival data can generally not be analyzed by conven-
tional methods such as linear regression. The main reason for this is
that some durations are usually right-censored; that is, the endpoint of
interest has not occurred during the period of observation and all that
is known about the duration is that it exceeds the observation period.
In the present dataset, this applies to all observations where status
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is 0. Another reason why conventional linear regression would not be
appropriate is that survival times tend to have positively skewed dis-
tributions. A third reason is that time-varying covariates, such as the
time of year, could not be handled. In the next section, we therefore
describe methods specifically developed for survival data.

12.2 Survival analysis

12.2.1 Introduction

The survival time T may be regarded as a random variable with a
probability distribution F (t) and probability density function f(t). An
obvious quantity of interest is the probability of surviving to time t or
beyond, the survivor function or survival curve S(t), which is given by

S(t) = P (T ≥ t) = 1 − F (t). (12.1)

A further function which is of interest for survival data is the hazard
function. This represents the instantaneous failure rate, that is, the
probability that an individual experiences the event of interest at a
time point given that the event has not yet occurred. It can be shown
that the hazard function is given by

h(t) =
f(t)
S(t)

, (12.2)

the instantaneous probability of failure at time t divided by the proba-
bility of surviving up to time t. Note that the hazard function is just the
incidence rate discussed in Chapter 11. It follows from equations (12.1)
and (12.2) that

−d log(S(t))
dt

= h(t),

so that

S(t) = exp(−H(t)), (12.3)

where H(t) is the integrated hazard function, also known as the cumu-
lative hazard function.
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12.2.2 Kaplan-Meier estimator

The Kaplan-Meier estimator is a nonparametric estimator of the sur-
vivor function S(t). If all the failure times, or times at which the
event occurs in the sample, are ordered and labeled t(j) such that
t(1) ≤ t(2) · · · ≤ t(n), the estimator is given by

Ŝ(t) =
∏

j|t(j)≤t

(
1 − dj

nj

)
,

where dj is the number of individuals who experience the event at time
t(j), and nj is the number of individuals who have not yet experienced
the event at that time and are therefore still ‘at risk’ of experiencing it
(including those censored at t(j)). The product is over all failure times
less than or equal to t.

12.2.3 Cox Regression

We can compare survival in different subgroups by plotting the Kaplan-
Meier estimators of the group-specific survivor functions and applying
simple significance tests (such as the log-rank test). However, when
there are several explanatory variables, and in particular when some of
these are continuous, it is much more useful to use a regression method
such as Cox regression. Here the hazard function for individual i is
modeled as

hi(t) = h0(t) exp(βT xi), (12.4)

where h0(t) is the baseline hazard function, β are regression coefficients,
and xi covariates. The baseline hazard is the hazard when all covari-
ates are zero, and this quantity is left unspecified. This nonparametric
treatment of the baseline hazard combined with a parametric represen-
tation of the effects of covariates gives rise to the term semiparametric
model. The main assumption of the model is that the hazard of any
individual i is a time-constant multiple of the hazard function of any
other individual j, the factor being exp(βT (xi − xj)), the hazard ratio
or incidence rate ratio. This property is called the proportional hazards
assumption. The exponentiated regression parameters can therefore
be interpreted as hazard ratios when the corresponding explanatory
variable increases by one unit if all other covariates remain constant.

The parameters β are estimated by maximizing the partial log like-
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lihood given by

∑
f

log

(
exp(βTxf )∑

i∈r(f) exp(βTxi)

)
(12.5)

where the first summation is over all failures f , and the second summa-
tion is over all subjects r(f) who are still at risk at the time of failure.
It can be shown that this log likelihood is a log profile likelihood (i.e.,
the log of the likelihood in which the baseline hazard parameters have
been replaced by functions of β which maximize the likelihood for fixed
β). Note also that the likelihood in equation (12.5) is equivalent to the
likelihood for matched case-control studies described in Chapter 11 if
the subjects at risk at the time of a failure (the risk set) are regarded as
controls matched to the case failing at that point in time (see Clayton
and Hills, 1993).

The baseline hazard function may be estimated by maximizing the
full log likelihood with the regression parameters evaluated at their
estimated values, giving nonzero values only when a failure occurs.
Integrating the hazard function gives the cumulative hazard function

Hi(t) = H0(t) exp(βTxi), (12.6)

where H0(t) is the integral of h0(t). The survival curve may be obtained
from H(t) using equation (12.3). This leads to the Kaplan-Meier esti-
mator when there are no covariates.

It follows from equation (12.3) that the survival curve for a Cox
model is given by

Si(t) = S0(t)exp(βTxi). (12.7)

The log of the cumulative hazard function predicted by the Cox model
is given by

log(Hi(t)) = log H0(t) + βT xi, (12.8)

so that the log cumulative hazard functions of any two subjects i and
j are parallel with constant difference given by βT (xi − xj).

Stratified Cox regression can be used to relax the assumption of
proportional hazards for a categorical predictor. The partial likelihood
of a stratified Cox model has the same form as equation (12.5) except
that the risk set for each failure is now confined to subjects in the same
stratum as the subject contributing to the numerator.
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Survival analysis is described in Allison (1984), Clayton and Hills (1993),
Collett (2003), and Klein and Moeschberger (2003). Cleves et al. (2004)
discuss survival analysis using Stata.

12.3 Analysis using Stata

The data are available as an ASCII file called heroin.dat on the disk
accompanying Hand et al. (1994). Since the data are stored in a two-
column format with the set of variables repeated twice in each row, as
shown in Table 12.1, we have to use reshape to bring the data into the
usual form:

infile id1 clinic1 status1 time1 prison1 dose1 /*
*/ id2 clinic2 status2 time2 prison2 dose2 /*
*/ using heroin.dat

gen row=_n
reshape long id clinic status time prison dose, /*

*/ i(row) j(col)
drop row col

Before fitting any survival models, we declare the data as being of
the form st (for survival time) using the stset command

stset time, failure(status)

failure event: status != 0 & status < .
obs. time interval: (0, time]
exit on or before: failure

238 total obs.
0 exclusions

238 obs. remaining, representing
150 failures in single record/single failure data

95812 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 1076

and look at a summary of the data using

stsum

failure _d: status
analysis time _t: time

incidence no. of Survival time
time at risk rate subjects 25% 50% 75%

total 95812 .0015656 238 212 504 821
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There are 238 subjects with a median survival time of 504 days. If
the incidence rate (i.e., the hazard function) could be assumed to be
constant, it would be estimated as 0.0016 per day which corresponds
to 0.57 per year.

The Kaplan-Meier estimator of the survivor functions for the two
clinics are obtained and plotted using

sts graph, by(clinic)

giving the graph in Figure 12.1. Dropout seems to occur more quickly
in clinic 1.

0.
00

0.
25

0.
50

0.
75

1.
00

0 200 400 600 800 1000
analysis time

clinic = 1 clinic = 2

Kaplan−Meier survival estimates, by clinic

Figure 12.1: Kaplan-Meier survival curves.

To investigate the effects of dose and prison on survival, we will
use Cox regression. We will allow the hazard functions for the two
clinics to be non-proportional. A Cox regression model with clinics as
strata is fitted using the stcox command with the strata() option:

stcox dose prison, strata(clinic)

giving the output shown in Display 12.1. Therefore, subjects with a
prison history are 47.5% more likely to drop out at any given time
(given that they remained in treatment until that time) than those
without a prison history. For every increase in methadone dose by one
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failure _d: status
analysis time _t: time

Iteration 0: log likelihood = -614.68365
Iteration 1: log likelihood = -597.73516
Iteration 2: log likelihood = -597.714
Refining estimates:
Iteration 0: log likelihood = -597.714

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(2) = 33.94
Log likelihood = -597.714 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

dose .9654655 .0062418 -5.44 0.000 .953309 .977777
prison 1.475192 .2491827 2.30 0.021 1.059418 2.054138

Stratified by clinic

Display 12.1

unit (1 mg), the hazard is multiplied by 0.965. This coefficient is very
close to one, but this may be because one unit of methadone dose is not
a large quantity. Even if we know little about methadone maintenance
treatment, we can assess how much one unit of methadone dose is by
finding the sample standard deviation:

summarize dose

Variable Obs Mean Std. Dev. Min Max

dose 238 60.39916 14.45013 20 110

indicating that a unit is not much at all; subjects often differ from each
other by 10 to 15 units. To find the hazard ratio of two subjects differing
by one standard deviation, we need to raise the hazard ratio to the
power of one standard deviation, giving 0.965465514.45013 = 0.60179167.
We can obtain the same result (with greater precision) using the stored
macros b[dose] for the log hazard ratio and r(Var) for the variance,

disp exp( b[dose]*sqrt(r(Var)))

.60178874

In the above calculation, we simply rescaled the regression coefficient
before taking the exponential. To obtain this hazard ratio in the Cox re-
gression, we need to standardize dose to have unit standard deviation.
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In the command below we also standardize to mean zero, although this
will make no difference to the estimated coefficients (only the baseline
hazards are affected):

egen zdose=std(dose)

We repeat the Cox regression with the option bases(s) which results
in the baseline survival function S0(t) being estimated and stored in s:

stcox zdose prison, strata(clinic) bases(s)

(see Display 12.2). The coefficient of zdose is identical to that calcu-

failure _d: status
analysis time _t: time

Iteration 0: log likelihood = -614.68365
Iteration 1: log likelihood = -597.73516
Iteration 2: log likelihood = -597.714
Refining estimates:
Iteration 0: log likelihood = -597.714

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(2) = 33.94
Log likelihood = -597.714 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

zdose .6017887 .0562195 -5.44 0.000 .5010998 .7227097
prison 1.475192 .2491827 2.30 0.021 1.059418 2.054138

Stratified by clinic

Display 12.2

lated previously and may now be interpreted as indicating a decrease of
the hazard by 40% when the methadone dose increases by one standard
deviation.

Assuming the variables prison and zdose satisfy the proportional
hazards assumption (see Section 12.3.1), we now present the model
graphically. To do this, we will plot the predicted survival curves sepa-
rately for the two clinics and for those with and without a prison record
where zdose is evaluated at its clinic-specific mean. Such a graph may
be produced by using stcox with the bases() option to generate a
variable containing the predicted baseline survival fractions and then
applying equation (12.7) to obtain the predicted survival fractions for
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particular covariate values:

stcox zdose prison, strata(clinic) bases(s)
egen mdose=mean(zdose), by(clinic)
gen surv=s^exp(_b[zdose]*mdose + _b[prison]*prison)

Note that these survival fractions represent predicted values for sub-
jects having the clinic-specific mean dose. We now transform time to
time in years, and plot the survival curves separately for each clinic:

gen tt=time/365.25
label variable tt "time in years"
label define clin 1 "Clinic 1" 2 "Clinic 2"
label values clinic clin

sort clinic time
twoway (line surv tt if prison==0, connect(stairstep)) /*
*/ (line surv tt if prison==1, connect(stairstep) /*
*/ clpat(dash)), by(clinic) ylabel(0(0.2)1) /*
*/ legend(order(1 "Prison record" 2 "No prison record"))

Here the connect(stairstep) option was used to produce the step
shaped survival curves shown in Figure 12.2. According to Caplehorn
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0 1 2 3 0 1 2 3
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Prison record No prison record

su
rv

time in years

Graphs by clinic

Figure 12.2: Survival curves.
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and Bell (1991), the more rapid decline in the proportion remaining in
clinic 1 compared with clinic 2 may be due to the policy of clinic 1 to
attempt to limit the duration of maintenance to two years.

The partial likelihood is appropriate for continuous survival times,
which should theoretically never take on the same value for any two
individuals or be tied. However, in practice survival times are measured
in discrete units, days in the present example, and ties will frequently
occur. For example, subjects 61 and 252 in clinic 1 both dropped out
after 180 days. By default stcox uses Breslow’s method for ties, where
the risk sets in (12.5) contain all subjects who failed at or after the
failure time of the subject contributing to the numerator. For a group
of subjects with tied survival times, the contributions to the partial
likelihood therefore each have the same denominator. However, risk
sets usually decrease by one after each failure. In Efron’s method, con-
tributions to the risk set from the subjects with tied failure times are
therefore downweighted in successive risk sets. In the exact method
(referred to as ‘exact marginal log likelihood’ in [ST] stcox, the Stata
reference manual for survival analysis), the contribution to the par-
tial likelihood from a group of tied survival times is the sum, over all
possible orderings (or permutations) of the tied survival times, of the
contributions to the partial likelihood corresponding to these orderings.
Efron’s method can be obtained using the efron option and the exact
method using the exactm option (see Exercise 4).

12.3.1 Assessing the proportional hazards assumption

12.3.1.1 Graphical methods

We now discuss methods for assessing the proportional hazards as-
sumption. A graphical approach is available for categorical predictors
if there are sufficient observations for each value of the predictor. In
this case the model is first estimated by stratifying on the categorical
predictor of interest, thus not making any assumption regarding the
relationship between the baseline hazards for different values of the
predictor or strata. The log cumulative baseline hazards for the strata
are then derived from the estimated model and plotted against time.
According to equation (12.8), the resulting curves should be parallel if
the proportional hazards assumption holds. Here we demonstrate this
method for the variable clinic. The cumulative baseline hazard can
be obtained using stcox with the basechazard() option as follows:

quietly stcox zdose prison, strata(clinic) basech(ch)

We now compute and then plot the logarithm of the cumulative baseline
hazard function using
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gen lh = log(ch)
sort time
twoway (line lh time if clinic==1, connect(stairstep)) /*
*/ (line lh time if clinic==2, connect(stairstep) /*
*/ clpat(dash)), xtitle("Time in days") /*
*/ ytitle("Log cumulative hazard") /*
*/ legend(order(1 "Clinic 1" 2 "Clinic 2"))

giving the graph shown in Figure 12.3. Clearly, the curves are not
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Figure 12.3: Log of minus the log of the survival functions for the two
clinics estimated by stratified Cox regression.

parallel, and we will therefore continue treating the clinics as strata.
Note that a quicker way of producing a similar graph would be to use
the stphplot command as follows:

stphplot, strata(clinic) adjust(zdose prison) zero /*
*/ xlabel(1/7)

Here the adjust() option specifies the covariates to be used in the Cox
regression, and the zero option specifies that these covariates are to
be evaluated at zero. As a result, minus the logs of the cumulative
baseline hazard functions (stratified by clinic) are plotted against the
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log of the survival time, see Figure 12.4.
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Figure 12.4: Minus the log of minus the log of the survival functions
for the two clinics versus log survival time, estimated by stratified Cox
regression.

To determine whether the hazard functions for those with and with-
out a prison history are proportional, we could split the data into four
strata by clinic and prison. However, as the strata get smaller, the
estimated survival functions become less precise (because the risk sets
in equation (12.5) become smaller). Also, a similar method could not
be used to check the proportional hazard assumption for the continuous
variable zdose without splitting it into arbitrary categories.

12.3.1.2 Time-varying covariates

Another way of testing the proportional hazards assumption of zdose,
say, is to introduce a time-varying covariate equal to the interaction
between time (since admission) and zdose, thus allowing the effect
of zdose to change over time. To estimate this model, the terms in
equation (12.5) need to be evaluated for values of the time-varying
covariates at the times of the failure in the numerator. These values
are not available for the denominator in the present dataset since each
subject is represented only once, at the time of their own failure (and
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not at all previous failure times). One possibility is to create the re-
quired dataset (see below). A simpler option is to simply use the stcox
command with the tvc() and texp() options:

stcox zdose prison, strata(clinic) tvc(zdose) /*
*/ texp((_t-504)/365.25)

The tvc() option specifies the variable that should interact with (a
function of) time and the texp() option specifies the function of time
to be used. Here we have simply subtracted the median survival time
so that the effect of the explanatory variable zdose can be interpreted
as the effect of zdose at the median survival time. We have divided
by 365.25 to see by how much the effect of zdose changes between
intervals of one year. The output is shown in Display 12.3 where the

failure _d: status
analysis time _t: time

Iteration 0: log likelihood = -614.68365
Iteration 1: log likelihood = -597.32655
Iteration 2: log likelihood = -597.29131
Iteration 3: log likelihood = -597.29131
Refining estimates:
Iteration 0: log likelihood = -597.29131

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 34.78
Log likelihood = -597.29131 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

rh
zdose .6442974 .0767535 -3.69 0.000 .5101348 .8137442
prison 1.481193 .249978 2.33 0.020 1.064036 2.061899

t
zdose 1.147853 .1720104 0.92 0.357 .8557175 1.539722

Stratified by clinic

Note: Second equation contains variables that continuously vary with respect to
time; variables are interacted with current values of (_t-504)/365.25.

Display 12.3

estimated increase in the hazard ratio for zdose is 15% per year. This
small effect is not significant at the 5% level which is confirmed by
carrying out the likelihood ratio test as follows:
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estimates store model1
quietly stcox zdose prison, strata(clinic)
lrtest model1 .

likelihood-ratio test LR chi2(1) = 0.85
(Assumption: . nested in model1) Prob > chi2 = 0.3579

giving a very similar p-value as before and confirming that there is
no evidence that the effect of dose on the hazard varies with time. A
similar test can be carried out for prison (see Exercise 6).

Although Stata makes it very easy to include an interaction between
a variable and a function of time, inclusion of other time-varying co-
variates, or of more than a single time-varying covariate, requires an
expanded version of the current dataset. In the expanded dataset each
subject’s record should appear (at least) as many times as that subject
contributes to a risk set in equation (12.5), with the time variable equal
to the corresponding failure times. This can be achieved very easily us-
ing the stsplit command, but only after defining an id variable using
stset:

stset time, failure(status) id(id)
stsplit, at(failures) strata(clinic)

The stsplit command generates new time and censoring variables t
and d, respectively. For subject 103, these are listed using

sort id _t
list _t _d if id==103, clean noobs

giving the values shown in Display 12.4. The last value of t (708)
is just the value of the original variable time, the subject’s survival
or censoring time, whereas the previous values are all unique survival
times (at which failures occurred) in the same stratum (clinic 2) which
are less than the subject’s own survival time. These ‘invented’ survival
times are times beyond which the subject survives, so the censoring
variable d is set to zero for all invented times and equal to status for
the original survival time. This new survival dataset is equivalent to
the original one, and we obtain the same results as before if we run

stcox zdose prison, strata(clinic)

(output not shown). However, we can now create time-varying co-
variates making use of the new time variable t. To assess the pro-
portional hazards assumption for zdose, we generate an interaction
between zdose and the linear transformation of t we used previously:

gen tdose=zdose*(t-504)/365.25
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_t _d
13 0
26 0
35 0
41 0
79 0

109 0
122 0
143 0
149 0
161 0
170 0
190 0
216 0
231 0
232 0
268 0
280 0
286 0
322 0
366 0
389 0
450 0
460 0
540 0
661 0
708 1

Display 12.4
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We now fit the Cox regression, allowing the effect of zdose to vary with
time:

stcox zdose tdose prison, strata(clinic)

giving the same result as before in Display 12.5.

failure _d: status
analysis time _t: time

id: id

Iteration 0: log likelihood = -614.68365
Iteration 1: log likelihood = -597.32655
Iteration 2: log likelihood = -597.29131
Iteration 3: log likelihood = -597.29131
Refining estimates:
Iteration 0: log likelihood = -597.29131

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 238 Number of obs = 11228
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 34.78
Log likelihood = -597.29131 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

zdose .6442974 .0767535 -3.69 0.000 .5101348 .8137442
prison 1.481193 .249978 2.33 0.020 1.064036 2.061899
tdose 1.147853 .1720104 0.92 0.357 .8557175 1.539722

Stratified by clinic

Display 12.5

We can restore the original data using the stjoin command after
deleting any time-varying covariates (apart from t and d):

drop tdose
stjoin

(option censored(0) assumed)
(10990 obs. eliminated)

A test of proportional hazards based on rescaled Schoenfeld or effi-
cient score residuals (see below), suggested by Grambsch and Therneau
(1994), is also available using the stphtest command (see for example
Cleves et al., 2002).
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12.3.2 Residuals

It is a good idea to produce some residual plots, for example a graph of
the deviance residuals against the linear predictor. In order for predict
to be able to compute the deviance residuals, we must first store the
martingale residuals (see for example Collett, 2003) using stcox with
the mgale() option:

stcox zdose prison, strata(clinic) mgale(mart)
predict devr, deviance

A scatterplot is produced using

predict xb, xb
twoway scatter devr xb, mlabel(id) mlabpos(0) /*
*/ msymbol(none)

with the result shown in Figure 12.5. There appear to be no serious
outliers.
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Figure 12.5: Deviance residuals for survival analysis.

Another type of residual is the Schoenfeld or efficient score residual,
defined as the first derivative of the partial log likelihood function with
respect to an explanatory variable. The score residual is large in ab-
solute value if a case’s explanatory variable differs substantially from
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the explanatory variables of subjects whose estimated risk of failure is
large at the case’s time of failure or censoring. Since our model has two
explanatory variables, we can compute the efficient score residuals for
zdose and prison and store them in score1 and score2 using stcox
with the esr option:

stcox zdose prison, strata(clinic) esr(score*)

These residuals can be plotted against survival time using

twoway scatter score1 tt, mlabel(id) mlabpos(0) msymbol(none)

and similarly for score2. The resulting graphs are shown in Fig-
ures 12.6 and 12.7. Subject 89 has a low value of zdose (−1.75) com-
pared with other subjects at risk of failure at such a late time. Subjects
8, 27, 12, and 71 drop out relatively late considering that they have a
police record, whereas others remaining beyond their time of dropout
(or censoring) tend to have no police record.
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Figure 12.6: Score residuals for zdose.
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Figure 12.7: Score residuals for prison.

12.4 Exercises

1. In the original analysis of this data, Caplehorn and Bell (1991)
judged that the hazards were approximately proportional for the
first 450 days (see Figure 12.3). They therefore analyzed the data
for this time period using clinic as a covariate instead of strat-
ifying by clinic. Repeat this analysis, using prison and dose as
further covariates.

2. Following Caplehorn and Bell (1991), repeat the above analysis
treating dose as a categorical variable with three levels (< 60, 60−
79, ≥ 80), and plot the predicted survival curves for the three dose
categories when prison and clinic take on one of their values.

3. Test for an interaction between clinic and the methadone dose,
treating dose as both continuous and categorical.

4. For the model treating dose as categorical and containing no in-
teraction, compare the estimates using three different methods of
handling ties: the Breslow, Efron, and exact methods.

5. Check the proportional hazards assumption for prison using the
same method we used for dose.
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Chapter 13

Maximum Likelihood

Estimation: Age of Onset

of Schizophrenia

13.1 Description of data

Table 13.1 gives the ages of onset of schizophrenia (determined as age on
first admission) for 99 women. These data will be used to investigate
whether there is any evidence for the subtype model of schizophre-
nia (see Lewine, 1981), according to which there are two types of
schizophrenia characterized by early and late onset.

13.2 Finite mixture distributions

The most common type of finite mixture distribution for continuous
responses is a mixture of univariate normal distributions of the form

f(yi;p,µ,σ) = p1g(yi;µ1, σ1) + p2g(yi;µ2, σ2) + · · · + pkg(yi;µk, σk),

where g(y;µ, σ) is the normal or Gaussian density with mean µ and
standard deviation σ,

g(y;µ, σ) =
1

σ
√

2π
exp

{
−1

2

(
y − µ

σ

)2
}

, (13.1)
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Table 13.1 Age of onset of schizophrenia
data in onset.dat

Ages of onset in onset.dat

20 30 21 23 30 25 13 19
16 25 20 25 27 43 6 21
15 26 23 21 23 23 34 14
17 18 21 16 35 32 48 53
51 48 29 25 44 23 36 58
28 51 40 43 21 48 17 23
28 44 28 21 31 22 56 60
15 21 30 26 28 23 21 20
43 39 40 26 50 17 17 23
44 30 35 20 41 18 39 27
28 30 34 33 30 29 46 36
58 28 30 28 37 31 29 32
48 49 30

and p1, · · · , pk are mixing probabilities.
The parameters p1, · · · , pk, µ1, · · · , µk, and σ1, · · · , σk are usually

estimated by maximum likelihood. Standard errors can be obtained
in the usual way from the observed information matrix (i.e., from the
inverse of the Hessian matrix, the matrix of second derivatives of the log
likelihood). Determining the number k of components in the mixture
is more problematic since the conventional likelihood ratio test cannot
be used to compare models with different k, a point we will return to
later.

For a short introduction to finite mixture modeling, see Everitt (1996);
a more comprehensive account is given in McLachlan and Peel (2000).
Maximum likelihood estimation using Stata is described in detail by
Gould et al. (2003).

13.3 Analysis using Stata

Stata has a command called ml, which can be used to maximize a
user-specified log likelihood using the Newton-Raphson algorithm. The
algorithm is iterative. Starting with initial parameter values, the pro-
gram evaluates the first and second derivatives of the log likelihood
at the parameter values to find a new set of parameter values where
the likelihood is likely to be greater. The derivatives are then evalu-
ated at the new parameters to update the parameters again, etc., until
the maximum has been found (where the first derivatives are zero and
the second derivatives negative). The EM algorithm, an alternative
to Newton-Raphson, is often believed to be superior for finite mixture
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models. However, in our experience the implementation of Newton-
Raphson in Stata works very well for these models.

To use ml, the user needs to write a program that evaluates the
log likelihood and possibly its derivatives. ml provides four likelihood-
evaluator methods: d0, d1, d2, and lf. The d0 method does not require
the user’s program to evaluate any derivatives of the log likelihood, d1
requires first derivatives only, and d2 requires both first and second
derivatives. When d0 is chosen, first and second derivatives are found
numerically; this makes this alternative slower and less accurate than
d1 or d2.

The simplest approach to use is lf which also does not require any
derivatives to be programmed. Instead, the structure of most likelihood
problems is used to increase both the speed and the accuracy of the
numerical differentiation. Whereas d0 to d2 can be used for any maxi-
mum likelihood problem, method lf may only be used if the likelihood
satisfies the following two criteria:

1. The observations in the dataset are independent, i.e., the log likeli-
hood is the sum of the log likelihood contributions of the observa-
tions.

2. The log likelihood contributions have a linear form, i.e., they are
(not necessarily linear) functions of linear predictors of the form
ηi = x1iβ1 + · · · + xkiβk.

The first restriction is usually met, an exception being clustered data.
The second restriction is not as severe as it appears because there may
be several linear predictors, as we shall see later. These restrictions
allow lf to evaluate derivatives efficiently and accurately using chain
rules. For example, first derivatives are obtained as

∂�i

∂β1

=
∂�i

∂ηi

x1i,

where �i is the log likelihood contribution from the ith observation. All
that is required are the derivatives with respect to the linear predic-
tor(s) from which the derivatives with respect to the individual param-
eters follow automatically.

In this chapter, we will give only a brief introduction to maximum
likelihood estimation using Stata, restricting our examples to the lf
method. We recommend the book on Maximum Likelihood Estimation
with Stata by Gould et al. (2003) for a thorough treatment of the topic.

We will eventually fit a mixture of normals to the age of onset data,
but will introduce the ml procedure by a series of simpler models.
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13.3.1 Single normal density

To begin with, we will fit a normal distribution with standard deviation
fixed at 1 to a set of simulated data. A (pseudo)-random sample from
the normal distribution with mean 5 and standard deviation 1 may be
obtained using the instructions

clear
set obs 100
set seed 12345678
gen y = invnorm(uniform())+5

where the purpose of the set seed command is simply to ensure that
the same data will be generated each time we repeat this sequence of
commands. We use summarize to confirm that the sample has a mean
close to 5 and a standard deviation close to 1.

summarize y

Variable Obs Mean Std. Dev. Min Max

y 100 5.002311 1.053095 2.112869 7.351898

First, define a program, mixing0, to evaluate the log likelihood con-
tributions when called from ml. The function must have two arguments;
the first is the variable name where ml will look for the computed log
likelihood contributions; the second is the variable name containing the
‘current’ value of the linear predictor during the iterative maximization
procedure:

capture program drop mixing0
program mixing0

version 8.1
args lj xb

tempname s

scalar `s´ = 1
quietly replace `lj´ = ln(normden($ML_y1,`xb´,`s´))

end

After giving names lj and xb to the arguments passed to mixing0 by
ml, mixing0 defines a temporary name stored in the local macro s and
sets it equal to the standard deviation (1) in the next command. The
reason for defining s is to make subsequent commands easier to read.
Using temporary names avoids any confusion with variables that may
exist in the dataset. The final command returns the log of the normal
density in `lj´ as required by the calling program. Here we used
the normden(y, mean, sd) function to calculate the normal density in
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equation (13.1) for the dependent variable whose name is stored in the
global macro ML y1 by ml. The mean is just the linear predictor `xb´,
and the standard deviation is the scalar `s´.

Note that all variables defined within a program to be used with
ml should be of storage type double to enable ml to estimate accurate
numerical derivatives. Scalars should be used instead of local macros
to hold constants as scalars have higher precision.

To define the model use

ml model lf mixing0 (xb: y=)

which specifies the method as lf and the program to evaluate the log
likelihood contributions as mixing0. The response and explanatory
variable are given by the ‘equation’ in parentheses. Here the name
before the colon, xb, is the name of the equation, the variable after
the colon, y, is the response variable, and the variables after the ‘=’
are the explanatory variables contributing to the linear predictor. No
explanatory variables are given here, so a constant only model will be
fitted.

As a result of this model definition, the global ML y1 will be equal
to y and in mixing0 `xb´ will be equal to the intercept parameter (the
mean) that is going to be estimated by ml.

Now maximize the likelihood using

ml maximize, noheader

giving the results shown in Display 13.1. The program converged in

initial: log likelihood = -1397.9454
alternative: log likelihood = -1160.3298
rescale: log likelihood = -197.02113
Iteration 0: log likelihood = -197.02113
Iteration 1: log likelihood = -146.79244
Iteration 2: log likelihood = -146.78981
Iteration 3: log likelihood = -146.78981

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 5.002311 .1 50.02 0.000 4.806314 5.198307

Display 13.1

three iterations and the maximum likelihood estimate of the mean is
equal to the sample mean of 5.002311. If we were interested in observing
the value of the mean parameter in each iteration, we could use the
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trace option in the ml maximize command. We used the noheader
option to suppress output relating to the likelihood ratio test against
a ‘null’ model since we have not specified such a model.

We now need to extend the program step by step until it can be
used to estimate a mixture of two Gaussians. The first step is to allow
the standard deviation to be estimated. Since this parameter does not
contribute linearly to the linear predictor used to estimate the mean,
we need to define another linear predictor by specifying another equa-
tion with no dependent variable in the ml model command. Assuming
that the program to evaluate the log likelihood contributions is called
mixing1, the ml model command becomes:

ml model lf mixing1 (xb: y=) (lsd:)

The new equation has the name lsd, has no dependent variable (since
y is the only dependent variable), and the linear predictor is simply a
constant. A short-form of the above command is

ml model lf mixing1 (xb: y=) /lsd

We intend to use lsd as the log standard deviation. Estimating the
log of the standard deviation will ensure that the standard deviation
itself is positive. We now need to modify the function mixing0 so that
it has an additional argument for the log standard deviation:

capture program drop mixing1
program mixing1

version 8.1
args lj xb ls

tempvar s

quietly gen double `s´ = exp(`ls´)
quietly replace `lj´ = ln(normden($ML_y1,`xb´,`s´))

end

We now define a temporary variable s instead of a scalar because, in
principle, the linear predictor `ls´, defined in the ml model command,
could contain covariates (see exercises) and hence differ between obser-
vations. The temporary variable name will not clash with any existing
variable names, and the variable will automatically be deleted when
the program has finished running. Running

ml maximize, noheader

gives the output shown in Display 13.2.
The standard deviation estimate is obtained by exponentiating the

estimated coefficient of cons in equation lsd. Instead of typing display
exp(0.0467083), we can use the following syntax for accessing coeffi-
cients and their standard errors:
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initial: log likelihood = -1397.9454
alternative: log likelihood = -534.94948
rescale: log likelihood = -301.15405
rescale eq: log likelihood = -180.56802
Iteration 0: log likelihood = -180.56802
Iteration 1: log likelihood = -147.50379
Iteration 2: log likelihood = -146.58464
Iteration 3: log likelihood = -146.56469
Iteration 4: log likelihood = -146.56469

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
_cons 5.002311 .1047816 47.74 0.000 4.796942 5.207679

lsd
_cons .0467083 .0707107 0.66 0.509 -.0918821 .1852986

Display 13.2

display [lsd]_b[_cons]

.04670833

display [lsd]_se[_cons]

.07071068

We can also omit ‘ b’ from the first expression, and compute the re-
quired standard deviation using

display exp([lsd][_cons])

1.0478163

This is smaller than the sample standard deviation from summarize
because the maximum likelihood estimate of the standard deviation is
given by

σ̂ =

√√√√ 1
n

n∑
i=1

(yi − y)2, (13.2)

where n is the sample size, whereas the factor 1
n−1

is used in summarize.
Since n is 100 in this case, the maximum likelihood estimate must
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be ‘blown up’ by a factor of
√

100/99 to obtain the sample standard
deviation:

display exp([lsd][_cons])*sqrt(100/99)

1.053095

13.3.2 Two-component mixture model

The program can now be extended to estimate a mixture of two Gaus-
sians. To allow us to test the program on data from a known distribu-
tion, we will simulate a sample from a mixture of two Gaussians with
standard deviations equal to 1 and means equal to 0 and 5 and with
mixing probabilities p1 = p2 = 0.5. This can be done in two stages; first
randomly allocate observations to groups (variable z) with probabili-
ties p1 and p2, and then sample from the different component densities
according to group membership.

clear
set obs 300
set seed 12345678
gen z = cond(uniform()<0.5,1,2)
gen y = invnorm(uniform())
replace y = y + 5 if z==2

We now need five equations, one for each parameter to be estimated:
µ1, µ2, σ1, σ2, and p1 (since p2 = 1 − p1). As before, we can ensure
that the estimated standard deviations are positive by taking the ex-
ponential inside the program. The mixing proportion p1 must lie in
the range 0 ≤ p1 ≤ 1. One way of ensuring this is to interpret the
linear predictor as representing the log odds (see Chapter 6) so that
p1 is obtained from the linear predictor of the log odds, lo1 using the
transformation 1/(1+exp(-lo1)). The program now becomes

capture program drop mixing2
program mixing2

version 8.1
args lj xb1 xb2 lo1 ls1 ls2

tempvar f1 f2 p s1 s2

quietly {
gen double `s1´ = exp(`ls1´)
gen double `s2´ = exp(`ls2´)
gen double `p´ = 1/(1+exp(-`lo1´))
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gen double `f1´ = normden($ML_y1,`xb1´,`s1´)
gen double `f2´ = normden($ML_y1,`xb2´,`s2´)
replace `lj´ = ln(`p´*`f1´ + (1-`p´)*`f2´)

}
end

Here we have used applied quietly to a whole block of commands by
enclosing them in braces.

Stata simply uses zero as initial values for all parameters. However,
it is not advisable here to start with the same initial value for both
component means. Therefore the starting values should be set using
the ml init commands as follows:

ml model lf mixing2 (xb1: y=) /xb2 /lo1 /lsd1 /lsd2
ml init 1 6 0 0.2 -0.2, copy
ml maximize, noheader

In the ml init command, the first two values are initial values for the
means, the third for the log odds, and the fourth and fifth for the logs
of the standard deviations.

The results are shown in Display 13.3 where the standard deviations

initial: log likelihood = -746.68918
rescale: log likelihood = -746.68918
rescale eq: log likelihood = -676.61764
Iteration 0: log likelihood = -676.61764 (not concave)
Iteration 1: log likelihood = -630.70988
Iteration 2: log likelihood = -625.88897
Iteration 3: log likelihood = -622.23406
Iteration 4: log likelihood = -622.21162
Iteration 5: log likelihood = -622.21162

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb1
_cons -.0457452 .0806427 -0.57 0.571 -.203802 .1123117

xb2
_cons 4.983717 .0863492 57.72 0.000 4.814476 5.152958

lo1
_cons .1122415 .1172032 0.96 0.338 -.1174725 .3419555

lsd1
_cons -.027468 .0627809 -0.44 0.662 -.1505164 .0955804

lsd2
_cons -.0173444 .0663055 -0.26 0.794 -.1473008 .1126121

Display 13.3
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are estimated as

display exp([lsd1][_cons])

.97290582

and

display exp([lsd2][_cons])

.9828052

and the probability of membership in group 1 as

display 1/(1 + exp(-[lo1][_cons]))

.52803094

The maximum likelihood estimates agree quite closely with the true
parameter values.

Alternative estimates of the mixing proportion and means and stan-
dard deviations, treating group membership as known (usually not pos-
sible!), are obtained using

table z, contents(freq mean y sd y)

z Freq. mean(y) sd(y)

1 160 -.0206726 1.003254
2 140 5.012208 .954237

and these are also similar to the maximum likelihood estimates. The
maximum likelihood estimate of the proportion (0.528) is closer to the
realized proportion 160/300 = 0.533 than the ‘true’ proportion 0.5.

The standard errors of the estimated means are given in the re-
gression table in Display 13.3 (0.081 and 0.086). We can estimate
the standard errors of the standard deviations and of the probabil-
ity from the standard errors of the log standard deviations and log
odds using the delta method (see for example Agresti, 2002, pages 577-
581). According to the delta method, if y = f(x), then approximately,
se(y) = |f ′(x)|se(x) where f ′(x) is the first derivative of f(x) with re-
spect to x evaluated at the estimated value of x. For the standard
deviation, sd = exp(lsd), so that, by the delta method,

se(sd) = sd × se(lsd). (13.3)
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For the probability, p = 1/(1 + exp(−lo)), so that

se(p) = p(1 − p) × se(lo). (13.4)

However, an even easier way of obtaining and displaying a function
of coefficients with the correct standard error in Stata is using the
nlcom command:

nlcom (sd1: exp([lsd1][_cons])) (sd2: exp([lsd2][_cons])) /*
*/ (p: invlogit([lo1][_cons]))

sd1: exp([lsd1][_cons])
sd2: exp([lsd2][_cons])
p: invlogit([lo1][_cons])

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

sd1 .9729058 .0610799 15.93 0.000 .8531913 1.09262
sd2 .9828052 .0651654 15.08 0.000 .8550833 1.110527
p .5280309 .0292087 18.08 0.000 .4707829 .585279

Display 13.4

In each set of parentheses, we specify a label, followed by a colon and
then an expression defining the function of stored estimates we are
interested in. Here we used the invlogit() function to obtain the
probability from the log odds. Stata then uses numerical derivatives to
work out the correct standard error using the delta-method giving the
results shown in Display 13.4. The z-statistic, p-value and confidence
interval should be ignored unless it is reasonable to assume a normal
sampling distribution for the derived parameter.

We can now apply the same program to the age of onset data. The
data can be read in using

infile y using onset.dat, clear
label variable y "age of onset of schizophrenia"

A useful graphical display of the data is a histogram produced using

histogram y, bin(12)

which is shown in Figure 13.1.
It seems reasonable to use initial values of 20 and 45 for the two

means. In addition, we will use a mixing proportion of 0.5 and log
standard deviations of 2 as initial values.
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Figure 13.1: Histogram of age of onset of schizophrenia in women.

ml model lf mixing2 (y: y=) /xb2 /lo1 /lsd1 /lsd2
ml init 20 45 0 2 2, copy
ml maximize, noheader

The output is given in Display 13.5. The means are estimated as 24.8
and 46.4, the standard deviations are estimated as 6.5 and 7.1 for
groups 1 and 2, respectively, and the mixing proportions are estimated
as 0.74 and 0.26. The approximate standard errors may be obtained
as before; see exercises.

We will now plot the estimated mixture density together with kernel
density estimates. Instead of using the command kdensity, we will
use twoway kdensity, allowing us to add the mixture density onto the
same graph:

graph twoway (kdensity y, width(3)) (function /*
*/ scalar(p1)*normden(x, [xb1]_cons, scalar(sd1)) /*
*/ +scalar(1-p1)*normden(x, [xb2]_cons, scalar(sd2)) /*
*/ , range(y) clpat(dash)), xtitle("Age") /*
*/ ytitle("Density") legend(order(1 "Kernel density" /*
*/ 2 "Mixture model"))

In Figure 13.2 the two estimates of the density are surprisingly simi-
lar. (Admittedly, we did choose the half-width of the kernel using the
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initial: log likelihood = -391.61146
rescale: log likelihood = -391.61146
rescale eq: log likelihood = -391.61146
Iteration 0: log likelihood = -391.61146 (not concave)
Iteration 1: log likelihood = -374.66689 (not concave)
Iteration 2: log likelihood = -374.36521
Iteration 3: log likelihood = -373.94028
Iteration 4: log likelihood = -373.6709
Iteration 5: log likelihood = -373.66896
Iteration 6: log likelihood = -373.66896

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb1
_cons 24.79772 1.133545 21.88 0.000 22.57601 27.01942

xb2
_cons 46.44685 2.740866 16.95 0.000 41.07485 51.81885

lo1
_cons 1.034415 .3697502 2.80 0.005 .3097178 1.759112

lsd1
_cons 1.877698 .1261092 14.89 0.000 1.630529 2.124868

lsd2
_cons 1.955009 .25692 7.61 0.000 1.451455 2.458563

Display 13.5
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width() option to obtain a good fit!)
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Figure 13.2: Kernel and mixture model densities for the age of onset
data.

The histogram and kernel density suggest that there are two subpop-
ulations. To test this more formally, we could also fit a single normal
distribution and compare the likelihoods. However, as mentioned ear-
lier, the conventional likelihood ratio test is not valid here. Wolfe (1971)
suggests, on the basis of a limited simulation study, that the difference
in minus twice the log likelihood for a model with k components com-
pared with a model with k + 1 components has approximately a χ2

distribution with 2ν − 2 degrees of freedom: here ν is the number of
extra parameters in the k + 1 component mixture. The log likelihood
of the current model may be accessed using e(ll). We store this in a
local macro

local ll = e(ll)

and fit the single normal model using the program mixing1 as follows:

ml model lf mixing1 (xb: y=) /lsd
ml init 30 1.9, copy
ml maximize, noheader
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with the result shown in Display 13.6. Comparing the log likelihoods

initial: log likelihood = -429.14924
rescale: log likelihood = -429.14924
rescale eq: log likelihood = -429.14924
Iteration 0: log likelihood = -429.14924
Iteration 1: log likelihood = -383.84531
Iteration 2: log likelihood = -383.39857
Iteration 3: log likelihood = -383.39585
Iteration 4: log likelihood = -383.39585

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
_cons 30.47475 1.169045 26.07 0.000 28.18346 32.76603

lsd
_cons 2.453747 .0710669 34.53 0.000 2.314458 2.593035

Display 13.6

using the method proposed by Wolfe,

local chi2 = 2*(`ll´-e(ll))
display chiprob(4,`chi2´)

.00063994

confirms that there appear to be two subpopulations.

13.4 Exercises

1. Create a do-file with the commands necessary to fit the mixture
model.

2. Add commands to the end of the do-file to calculate the standard
deviations and mixing probability and the standard errors of these
parameters. What are the standard errors of the estimates for the
age of onset data?

3. Simulate values from two normals trying out different values for the
various parameters. Do the estimated values tend to lie within two
estimated standard errors from the ‘true’ values?

4. Use program mixing1 to fit a linear regression model to the slim-
ming data from Chapter 5 using only status as the explanatory

© 2004 by CRC Press LLC 



variable. Compare the standard deviation with the root mean
square error obtained using the command regress.

5. Use the same program again to fit a linear regression model where
the variance is allowed to differ between the groups defined by
status. Is there any evidence for heteroscedasticity? How do the
results compare with those of sdtest?

6. Extend the program mixing2 to fit a mixture of three normals
and test this on simulated data (hint: use transformations p1 =
1/d, p2 = exp(lo1)/d, and p3 = exp(lo2)/d where d = 1+exp(lo1)+
exp(lo2)).
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Chapter 14

Principal Components

Analysis: Hearing

Measurement using an

Audiometer

14.1 Description of data

The data in Table 14.1 are adapted from those given in Jackson (1991),
and relate to hearing measurements with an instrument called an au-
diometer. An individual is exposed to a signal of a given frequency
with an increasing intensity until the signal is perceived. The low-
est intensity at which the signal is perceived is a measure of hearing
loss, calibrated in units referred to as decibel loss in comparison with
a reference standard for that particular instrument. Observations are
obtained one ear at a time for a number of frequencies. In this ex-
ample, the frequencies used were 500 Hz, 1000 Hz, 2000 Hz, and 4000
Hz. The limits of the instrument are −10 to 99 decibels. (A negative
value does not imply better than average hearing; the audiometer had
a calibration ‘zero’, and these observations are in relation to that.)

Table 14.1 Data in hear.dat (taken from Jackson (1991)
with permission of his publisher, John Wiley & Sons)
id l500 l1000 l2000 l4000 r500 r1000 r2000 r4000
1 0 5 10 15 0 5 5 15
2 −5 0 −10 0 0 5 5 15
3 −5 0 15 15 0 0 5 15
4 −5 0 −10 −10 −10 −5 −10 10
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Table 14.1 Data in hear.dat (continued)
5 −5 −5 −10 10 0 −10 −10 50
6 5 5 5 −10 0 5 0 20
7 0 0 0 20 5 5 5 10
8 −10 −10 −10 −5 −10 −5 0 5
9 0 0 0 40 0 0 −10 10

10 −5 −5 −10 20 −10 −5 −10 15
11 −10 −5 −5 5 5 0 −10 5
12 5 5 10 25 −5 −5 5 15
13 0 0 −10 15 −10 −10 −10 10
14 5 15 5 60 5 5 0 50
15 5 0 5 15 5 −5 0 25
16 −5 −5 5 30 5 5 5 25
17 0 −10 0 20 0 −10 −10 25
18 5 0 0 50 10 10 5 65
19 −10 0 0 15 −10 −5 5 15
20 −10 −10 −5 0 −10 −5 −5 5
21 −5 −5 −5 35 −5 −5 −10 20
22 5 15 5 20 5 5 5 25
23 −10 −10 −10 25 −5 −10 −10 25
24 −10 0 5 15 −10 −5 5 20
25 0 0 0 20 −5 −5 10 30
26 −10 −5 0 15 0 0 0 10
27 0 0 5 50 5 0 5 40
28 −5 −5 −5 55 −5 5 10 70
29 0 15 0 20 10 −5 0 10
30 −10 −5 0 15 −5 0 10 20
31 −10 −10 5 10 0 0 20 10
32 −5 5 10 25 −5 0 5 10
33 0 5 0 10 −10 0 0 0
34 −10 −10 −10 45 −10 −10 5 45
35 −5 10 20 45 −5 10 35 60
36 −5 −5 −5 30 −5 0 10 40
37 −10 −5 −5 45 −10 −5 −5 50
38 5 5 5 25 −5 −5 5 40
39 −10 −10 −10 0 −10 −10 −10 5
40 10 20 15 10 25 20 10 20
41 −10 -10 −10 20 −10 -10 0 5
42 5 5 −5 40 5 10 0 45
43 −10 0 10 20 −10 0 15 10
44 −10 -10 10 10 −10 -10 5 0
45 −5 −5 −10 35 −5 0 −10 55
46 5 5 10 25 10 5 5 20
47 5 0 10 70 −5 5 15 40
48 5 10 0 15 5 10 0 30
49 −5 −5 5 −10 -10 −5 0 20
50 −5 0 10 55 −10 0 5 50
51 −10 -10 −10 5 −10 -10 −5 0
52 5 10 20 25 0 5 15 0
53 −10 -10 50 25 −10 -10 −10 40
54 5 10 0 −10 0 5 −5 15
55 15 20 10 60 20 20 0 25
56 −10 -10 −10 5 −10 -10 −5 -10
57 −5 −5 −10 30 0 −5 −10 15
58 −5 −5 0 5 −5 −5 0 10
59 −5 5 5 40 0 0 0 10
60 5 10 30 20 5 5 20 60
61 5 5 0 10 −5 5 0 10
62 0 5 10 35 0 0 5 20
63 −10 -10 −10 0 −5 0 −5 0
64 −10 −5 −5 20 −10 -10 −5 5
65 5 10 0 25 5 5 0 15
66 −10 0 5 60 −10 −5 0 65
67 5 10 40 55 0 5 30 40
68 −5 −10 -10 20 −5 −10 -10 15
69 −5 −5 −5 20 −5 0 0 0
70 −5 −5 −5 5 −5 0 0 5
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Table 14.1 Data in hear.dat (continued)
71 0 10 40 60 −5 0 25 50
72 −5 −5 −5 −5 −5 −5 −5 5
73 0 5 45 50 0 10 15 50
74 −5 −5 10 25 −10 −5 25 60
75 0 −10 0 60 15 0 5 50
76 −5 0 10 35 −10 0 0 15
77 5 0 0 15 0 5 5 25
78 15 15 5 35 10 15 −5 0
79 −10 -10 −10 5 −5 −5 −5 5
80 −10 -10 −5 15 −10 -10 −5 5
81 0 −5 5 35 −5 −5 5 15
82 −5 −5 −5 10 −5 −5 −5 5
83 −5 −5 −10 -10 0 −5 −10 0
84 5 10 10 20 −5 0 0 10
85 −10 -10 −10 5 −10 −5 −10 20
86 5 5 10 0 0 5 5 5
87 −10 0 −5 −10 -10 0 0 -10
88 −10 -10 10 15 0 0 5 15
89 −5 0 10 25 −5 0 5 10
90 5 0 −10 -10 10 0 0 0
91 0 0 5 15 5 0 0 5
92 −5 0 −5 0 −5 −5 −10 0
93 −5 5 −10 45 −5 0 −5 25
94 −10 −5 0 10 −10 5 −10 10
95 −10 −5 0 5 −10 −5 −5 5
96 5 0 5 0 5 0 5 15
97 −10 -10 5 40 −10 −5 −10 5
98 10 10 15 55 0 0 5 75
99 −5 5 5 20 −5 5 5 40

100 −5 −5 −10 −10 −5 0 15 10

14.2 Principal component analysis

Principal component analysis is one of the oldest but still most widely
used techniques of multivariate analysis. Originally introduced by Pear-
son (1901) and independently by Hotelling (1933), the basic idea of the
method is to try to describe the variation of the variables in a set of
multivariate data as parsimoniously as possible using a set of derived
uncorrelated variables, each of which is a particular linear combination
of those in the original data. In other words, principal component anal-
ysis is a transformation from the observed variables, y1i, · · · , ypi to new
variables z1i, · · · , zpi where

z1i = a11y1i + a12y2i + · · · + a1pypi

z2i = a21y1i + a22y2i + · · · + a2pypi

... =
... +

... +
... +

...
zpi = ap1y1i + ap2y2i + · · · + appypi.

(14.1)

The new variables are derived in decreasing order of importance.
The coefficients a11 to a1p for the first principal component are derived
so that the sample variance of y1i is as large as possible. Since this
variance could be increased indefinitely by simply increasing the co-
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efficients, a restriction must be placed on them, generally that their
sum of squares is one. The coefficients defining the second principal
component y2i are determined to maximize its sample variance subject
to the constraint that the sum of squared coefficients equals 1 and that
the sample correlation between y1i and y2i is 0. The other principal
components are defined similarly by requiring that they are uncorre-
lated with all previous principal components. It can be shown that
the required coefficients are given by the eigenvectors of the sample
covariance matrix of y1i, · · · , ypi, and their variances are given by the
corresponding eigenvalues. In practice components are often derived
from the correlation matrix instead of the covariance, particularly if
the variables have very different scales. The analysis is then equivalent
to calculation of the components from the original variables after these
have been standardized to unit variance.

The usual objective of this type of analysis is to assess whether
the first few components account for a substantial proportion of the
variation in the data. If they do, they can be used to summarize the
data with little loss of information. This may be useful for obtaining
graphical displays of the multivariate data or for simplifying subsequent
analysis. The principal components can be interpreted by inspecting
the eigenvectors defining them. Here it is often useful to multiply the
elements by the square root of the corresponding eigenvalue in which
case the coefficients represent correlations between an observed variable
and a component. A detailed account of principal component analysis
is given in Everitt and Dunn (2001).

14.3 Analysis using Stata

The data can be read in from an ASCII file hear.dat as follows:

infile id l500 l1000 l2000 l4000 r500 r1000 r2000 r4000 /*
*/ using hear.dat

summarize

(see Display 14.1).
Before undertaking a principal component analysis, some graphical

exploration of the data may be useful. A scatterplot matrix, for exam-
ple, with points labeled with a subject’s identification number can be
obtained using

graph matrix l500-r4000, mlabel(id) msymbol(none) /*
*/ mlabposition(0) half
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Figure 14.1: Scatterplot matrix of hearing loss at different frequencies for the left and right ear.
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Variable Obs Mean Std. Dev. Min Max

id 100 50.5 29.01149 1 100
l500 100 -2.8 6.408643 -10 15

l1000 100 -.5 7.571211 -10 20
l2000 100 2.45 11.94463 -10 50
l4000 100 21.35 19.61569 -10 70

r500 100 -2.6 7.123726 -10 25
r1000 100 -.7 6.396811 -10 20
r2000 100 1.55 9.257675 -10 35
r4000 100 20.95 19.43254 -10 75

Display 14.1

The resulting diagram is shown in Figure 14.1. The diagram looks a
little ‘odd’ due to the largely ‘discrete’ nature of the observations. Some
of the individual scatterplots suggest that some of the observations
might perhaps be regarded as outliers; for example, individual 53 in
the plot involving l2000, r2000. This subject has a score of 50 at
this frequency in the left ear, but a score of −10 in the right ear.
It might be appropriate to remove this subject’s observations before
further analysis, but we shall not do this and will continue to use the
data from all 100 individuals.

As mentioned in the previous section, principal components may be
extracted from either the covariance matrix or the correlation matrix
of the original variables. A choice needs to be made since there is not
necessarily any simple relationship between the results in each case.
The summary table shows that the variances of the observations at
the highest frequencies are approximately nine times those at the lower
frequencies; consequently, a principal component analysis using the
covariance matrix would be dominated by the 4000 Hz frequency. But
this frequency is not more clinically important than the others, and so,
in this case, it seems more reasonable to use the correlation matrix as
the basis of the principal component analysis.

To find the correlation matrix of the data requires the following
instruction:

correlate l500-r4000

and the result is given in Display 14.2. Note that the highest correla-
tions occur between adjacent frequencies on the same ear and between
corresponding frequencies on different ears.

The pca command can be used to obtain the principal components
of this correlation matrix:
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(obs=100)

l500 l1000 l2000 l4000 r500 r1000 r2000 r4000

l500 1.0000

l1000 0.7775 1.0000

l2000 0.3247 0.4437 1.0000

l4000 0.2554 0.2749 0.3964 1.0000

r500 0.6963 0.5515 0.1795 0.1790 1.0000

r1000 0.6416 0.7070 0.3532 0.2632 0.6634 1.0000

r2000 0.2399 0.3606 0.5910 0.3193 0.1575 0.4151 1.0000

r4000 0.2264 0.2109 0.3598 0.6783 0.1421 0.2248 0.4044 1.0000

Display 14.2

pca l500-r4000

which gives the results shown in Display 14.3.
An informal rule for choosing the number of components to repre-

sent a set of correlations is to use only those components with eigenval-
ues greater than one, i.e., those with variances greater than the average.
Here, this leads to retaining only the first two components. Another in-
formal indicator of the appropriate number of components is the scree
plot, a plot of the eigenvalues against their rank. A scree plot may be
obtained using

greigen

with the result shown in Figure 14.2. The number of eigenvalues above
a distinct ‘elbow’ in the scree plot is usually taken as the number of
principal components to select. From Figure 14.2, this would again
appear to be two. The first two components account for 68% of the
variance in the data.

Examining the eigenvectors defining the first two principal compo-
nents, we see that the first accounting for 48% of the variance has
coefficients that are all positive and all approximately the same size.
This principal component essentially represents the overall hearing loss
of a subject and implies that individuals suffering hearing loss at certain
frequencies will be more likely to suffer this loss at other frequencies
as well. The second component, accounting for 20% of the variance,
contrasts high frequencies (2000 Hz and 4000 Hz) and low frequencies
(500 Hz and 1000 Hz). It is well known in the case of normal hearing
that hearing loss as a function of age is first noticeable in the higher
frequencies.

Scores for each individual on the first two principal components
might be used as a convenient way of summarizing the original eight-
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(obs=100)

(principal components; 8 components retained)
Component Eigenvalue Difference Proportion Cumulative

1 3.82375 2.18915 0.4780 0.4780
2 1.63459 0.72555 0.2043 0.6823
3 0.90904 0.40953 0.1136 0.7959
4 0.49951 0.12208 0.0624 0.8584
5 0.37743 0.03833 0.0472 0.9055
6 0.33910 0.07809 0.0424 0.9479
7 0.26101 0.10545 0.0326 0.9806
8 0.15556 . 0.0194 1.0000

Eigenvectors
Variable 1 2 3 4 5 6

l500 0.40915 -0.31257 0.13593 -0.27217 -0.16650 0.41679
l1000 0.42415 -0.23011 -0.09332 -0.35284 -0.49977 -0.08474
l2000 0.32707 0.30065 -0.47772 -0.48723 0.50331 0.04038
l4000 0.28495 0.44875 0.47110 -0.17955 0.09901 -0.51286
r500 0.35112 -0.38744 0.23944 0.30453 0.62830 0.17764

r1000 0.41602 -0.23673 -0.05684 0.36453 -0.08611 -0.54457
r2000 0.30896 0.32280 -0.53841 0.51686 -0.16229 0.12553
r4000 0.26964 0.49723 0.41499 0.19757 -0.17570 0.45889

Eigenvectors
Variable 7 8

l500 0.28281 -0.60077
l1000 -0.02919 0.61330
l2000 -0.27925 -0.06396
l4000 0.43536 -0.02978
r500 0.12745 0.36603

r1000 -0.46180 -0.34285
r2000 0.44761 0.02927
r4000 -0.47094 0.07469

Display 14.3
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Figure 14.2: Scree plot.

dimensional data. Such scores are obtained by applying the elements
of the corresponding eigenvector to the standardized values of the orig-
inal observations for an individual. The necessary calculations can be
carried out with the score procedure:

score pc1 pc2

(see Display 14.4).
The new variables pc1 and pc2 contain the scores for the first two

principal components, and the output lists the coefficients used to form
these scores. For principal component analysis, these coefficients are
just the elements of the eigenvectors in Display 14.3. The principal
component scores can be used to produce a useful graphical display of
the data in a single scatterplot, which may then be used to search for
structure or patterns in the data, particularly the presence of clusters
of observations (see Everitt et al., 2001). Note that the distances be-
tween observations in this graph approximate the Euclidean distances
between the (standardized) variables, i.e., the graph is a multidimen-
sional scaling solution. In fact, the graph is the classical scaling (or
principal coordinate) scaling solution to the Euclidean distances (see
Everitt and Dunn, 2001, or Everitt and Rabe-Hesketh, 1997).

The principal component plot is obtained using
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(based on unrotated principal components)
(6 scorings not used)

Scoring Coefficients
Variable 1 2

l500 0.40915 -0.31257
l1000 0.42415 -0.23011
l2000 0.32707 0.30065
l4000 0.28495 0.44875
r500 0.35112 -0.38744

r1000 0.41602 -0.23673
r2000 0.30896 0.32280
r4000 0.26964 0.49723

Display 14.4

twoway scatter pc2 pc1, mlabel(id)

The resulting diagram is shown in Figure 14.3. Here, the variability in
differential hearing loss for high versus low frequencies (pc2) is greater
among subjects with higher overall hearing loss, as would be expected.
It would be interesting to investigate the relationship between the prin-
cipal components and other variables related to hearing loss such as age
(see Exercise 6).

14.4 Exercises

1. Rerun the principal component analysis described in this chapter
using the covariance matrix of the observations. Compare the re-
sults with those based on the correlation matrix.

2. Interpret components 3 through 8 in the principal components anal-
ysis based on the correlation matrix.

3. Create a scatterplot matrix of the first five principal component
scores.

4. Investigate other methods of factor analysis available in factor
applied to the hearing data.

5. Apply principal component analysis to the air pollution data ana-
lyzed in Chapter 3, excluding the variable so2, and plot the first
two principal components (i.e., the two-dimensional classical scaling
solution for Euclidean distances between standardized variables).

6. Regress so2 on the first two principal components and add a line
corresponding to this regression (the direction of steepest increase
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Figure 14.3: Principal component plot.

in so2 predicted by the regression plane) into the multidimensional
scaling solution.
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Chapter 15

Cluster Analysis: Tibetan

Skulls and Air Pollution in

the USA

15.1 Description of data

The first set of data to be used in this chapter is shown in Table 15.1.
These data, collected by Colonel L.A. Waddell, were first reported in
Morant (1923) and are also given in Hand et al. (1994). The data
consists of five measurements on each of 32 skulls found in the south-
western and eastern districts of Tibet. The five measurements (all in
millimeters) are as follows:

� y1: greatest length of skull

� y2: greatest horizontal breadth of skull

� y3: height of skull

� y4: upper face length

� y5: face breadth, between outermost points of cheek bones

The main question of interest about these data is whether there is
any evidence of different types or classes of skull.

The second set of data that we shall analyze in this chapter is the air
pollution data introduced previously in Chapter 3 (see Table 3.1). Here
we shall investigate whether the clusters of cities found are predictive
of air pollution.
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Table 15.1 Tibetan skull data

y1 y2 y3 y4 y5

190.5 152.5 145.0 73.5 136.5
172.5 132.0 125.5 63.0 121.0
167.0 130.0 125.5 69.5 119.5
169.5 150.5 133.5 64.5 128.0
175.0 138.5 126.0 77.5 135.5
177.5 142.5 142.5 71.5 131.0
179.5 142.5 127.5 70.5 134.5
179.5 138.0 133.5 73.5 132.5
173.5 135.5 130.5 70.0 133.5
162.5 139.0 131.0 62.0 126.0
178.5 135.0 136.0 71.0 124.0
171.5 148.5 132.5 65.0 146.5
180.5 139.0 132.0 74.5 134.5
183.0 149.0 121.5 76.5 142.0
169.5 130.0 131.0 68.0 119.0
172.0 140.0 136.0 70.5 133.5
170.0 126.5 134.5 66.0 118.5
182.5 136.0 138.5 76.0 134.0
179.5 135.0 128.5 74.0 132.0
191.0 140.5 140.5 72.5 131.5
184.5 141.5 134.5 76.5 141.5
181.0 142.0 132.5 79.0 136.5
173.5 136.5 126.0 71.5 136.5
188.5 130.0 143.0 79.5 136.0
175.0 153.0 130.0 76.5 142.0
196.0 142.5 123.5 76.0 134.0
200.0 139.5 143.5 82.5 146.0
185.0 134.5 140.0 81.5 137.0
174.5 143.5 132.5 74.0 136.5
195.5 144.0 138.5 78.5 144.0
197.0 131.5 135.0 80.5 139.0
182.5 131.0 135.0 68.5 136.0
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15.2 Cluster analysis

Cluster analysis is a generic term for a set of (largely) exploratory data
analysis techniques that seek to uncover groups or clusters in data.
The term exploratory is important since it explains the largely ab-
sent ‘p-value’, ubiquitous in many other areas of statistics. Clustering
methods are primarily intended for generating rather than testing hy-
potheses. A detailed account of what is now a very large area is given
in Everitt et al., (2001).

The most commonly used class of clustering methods contains those
methods that lead to a series of nested or hierarchical classifications of
the observations, beginning at the stage where each observation is re-
garded as forming a single-member ‘cluster’ and ending at the stage
where all the observations are in a single group. The complete hi-
erarchy of solutions can be displayed as a tree diagram known as a
dendrogram. In practice, most users will be interested not in the whole
dendrogram, but in selecting a particular number of clusters that is op-
timal in some sense for the data. This entails ‘cutting’ the dendrogram
at some particular level.

Most hierarchical methods operate not on the raw data, but on an
inter-individual distance matrix calculated from the raw data. The
most commonly used distance measure is Euclidean and is defined as:

dij =
√

(y1i − y1j)2 + (y2i − y2j)2 + · · · + (ypi − ypj)2, (15.1)

where y1i to ypi are the variables for individual i.
A variety of hierarchical clustering techniques arise because of the

different ways in which the distance between a cluster containing several
observations and a single observation, or between two clusters, can be
defined. The inter-cluster distances used by three commonly applied
hierarchical clustering techniques are:

� Single linkage clustering: distance between the closest pair of
observations, where one member of the pair is in the first cluster
and the other in the second cluster, and

� Complete linkage clustering: distance between the most remote
pair of observations where one member of the pair is in the first
cluster and the other in the second cluster.

� Average linkage: average of distances between all pairs of obser-
vations where one member of the pair is in the first cluster and
the other in the second cluster.

An alternative approach to clustering to that provided by the hi-
erarchical methods described above is k-means clustering. Here the
data are partitioned into a specified number of groups set by the user
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by an iterative process in which, starting from an initial set of cluster
means, each observation is placed into the group to whose mean vector
it is closest (generally in the Euclidean sense). After each iteration,
new group means are calculated and the procedure repeated until no
observations change groups. The initial group means can be chosen in
a variety of ways. In general, the method is applied to the data for
different numbers of groups and then an attempt is made to select the
number of groups that provides the best fit for the data.

Important issues that need to be considered when using clustering
in practice include how to scale the variables before calculating the
chosen distance matrix, which particular method of cluster analysis to
use, and how to decide on the appropriate number of groups in the data.
These and many other practical problems of clustering are discussed in
Everitt et al. (2001).

15.3 Analysis using Stata

15.3.1 Tibetan skulls

Assuming the data in Table 15.1 are contained in a file tibetan.dat,
they can be read into Stata using the instruction

infile y1 y2 y3 y4 y5 using tibetan.dat, clear
gen id = _n

Here we have also generated an identifier variable id for the skulls.
To begin it is good practice to examine some graphical displays of the
data. With multivariate data such as the measurements on skulls in
Table 15.1 a scatterplot matrix is often helpful and can be generated
as follows:

graph matrix y1-y5

The resulting plot is shown in Figure 15.1. A few of the individual
scatterplots in Figure 15.1 are perhaps suggestive of a division of the
observations into distinct groups, for example that for y4 (upper face
height) versus y5 (face breadth).

We shall now apply each of single linkage, complete linkage, and
average linkage clustering to the data using Euclidean distance as the
basis of each analysis. Here the five measurements are all on the same
scale, so that standardization before calculating the distance matrix
is probably not needed (but see the analysis of the air pollution data
described later). The necessary Stata commands are

cluster singlelinkage y1-y5, name(sl)
cluster dendrogram
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Figure 15.1: Scatterplot matrix of Tibetan skull data
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cluster completelinkage y1-y5, name(cl)
cluster dendrogram
cluster averagelinkage y1-y5, name(al)
cluster dendrogram

Here the name() option is used to attach a name to the results from
each cluster analysis. The resulting three dendrograms are shown in
Figures 15.2, 15.3, and 15.4.

The single linkage dendrogram illustrates one of the common prob-
lems with this technique, namely its tendency to incorporate obser-
vations into existing clusters rather than begin new ones, a property
generally referred to as chaining (see Everitt et al., 2001, for full de-
tails). The complete linkage and average linkage dendrograms show
more evidence of cluster structure in the data, although this structure
appears to be different for each method, a point we shall investigate
later.

Dendrogram for sl cluster analysis

L2
 d

is
si

m
ila

rit
y 

m
ea

su
re

0

16.7183

261012 1 4 2 3 151727301431252011 6 7 211819 8 13222428 5 9 23162932

Figure 15.2: Dendrogram using single linkage.

In most applications of cluster analysis the researcher will try to
determine the solution with the optimal number of groups, i.e., the
number of groups that ‘best’ fits the data. Estimating the number of
groups in a cluster analysis is a difficult problem without a completely
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Dendrogram for cl cluster analysis
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Figure 15.3: Dendrogram using complete linkage.
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Figure 15.4: Dendrogram using average linkage.
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satisfactory solution – see Everitt et al. (2001). Two stopping rules
are provided in Stata, the Calinski and Harabasz pseudo F -statistic
(Calinski and Harabasz, 1974) and the Duda and Hart index (Duda
and Hart, 1973); see [CL] cluster stop for details. For both these
rules, larger values indicate more distinct clustering.

Here we shall illustrate the use of the Duda and Hart index in asso-
ciation with the three clustering techniques applied above. The Stata
commands are

cluster stop sl, rule(duda) groups(1/5)

(see Display 15.1),

Duda/Hart
Number of pseudo
clusters Je(2)/Je(1) T-squared

1 0.9512 1.54
2 0.9357 1.99
3 0.9430 1.69
4 0.9327 1.95
5 0.9380 1.72

Display 15.1

cluster stop cl, rule(duda) groups(1/5)

(see Display 15.2), and

Duda/Hart
Number of pseudo
clusters Je(2)/Je(1) T-squared

1 0.6685 14.88
2 0.6073 7.11
3 0.5603 13.34
4 0.3356 7.92
5 0.7006 2.56

Display 15.2
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cluster stop al, rule(duda) groups(1/5)

(see Display 15.3).

Duda/Hart
Number of pseudo
clusters Je(2)/Je(1) T-squared

1 0.6722 14.63
2 0.7192 9.37
3 0.5959 2.03
4 0.7200 7.39
5 0.3731 3.36

Display 15.3

Distinct clustering is generally considered to be indicated by large
values of the Duda and Hart index and small values of the Duda and
Hart pseudo T -squared. Adopting this approach, the results from single
linkage clustering do not suggest any distinct cluster structure largely
because of the chaining phenomenon. The results associated with com-
plete linkage clustering suggest a five-group solution and those from
the average linkage method suggest perhaps three or four groups.

To see which skulls are placed in which groups we can use the
cluster gen command. For example, to examine the five group so-
lution given by complete linkage we use

cluster gen g5cl=groups(5), name(cl)
sort g5cl id
forvalues i=1/5 {

disp " "
disp "cluster `i´"
list id if g5cl==`i´, noobs noheader separator(0)

}

Here we use a forvalues loop to list id for each cluster. The noobs op-
tion suppresses line-numbers; the noheader option suppresses variable
names; and separator(0) suppresses separator lines. The resulting
output is shown in Display 15.4. The numbers of observations in each
group can be tabulated using

tab g5cl

giving the table in Display 15.5.
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cluster 1

1
20
24
26
27
28
30
31

cluster 2

12
14
21
22
25

cluster 3

2
3

15
17

cluster 4

4
10

cluster 5

5
6
7
8
9

11
13
16
18
19
23
29
32

Display 15.4
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g5cl Freq. Percent Cum.

1 8 25.00 25.00
2 5 15.63 40.63
3 4 12.50 53.13
4 2 6.25 59.38
5 13 40.63 100.00

Total 32 100.00

Display 15.5

It is often helpful to compare the mean vectors of each of the clusters.
The necessary code to find these is:

table g5cl, contents(mean y1 mean y2 mean y3 mean y4 /*
*/ mean y5) format(%4.1f)

g5cl mean(y1) mean(y2) mean(y3) mean(y4) mean(y5)

1 192.9 139.4 138.6 78.1 138.0
2 179.0 146.8 130.2 74.7 141.7
3 169.8 129.6 129.1 66.6 119.5
4 166.0 144.8 132.3 63.3 127.0
5 177.6 137.9 132.7 72.5 133.4

Display 15.6

The skulls in cluster 1 are characterized by being relatively long and
narrow. Those in cluster 2 are, on average, shorter and broader. Clus-
ter 3 skulls appear to be particularly narrow, and those in cluster 4
have short upper face length. Skulls in cluster 5 might perhaps be
considered ‘average’.

The scatterplot matrix of the data used earlier to allow a ‘look’ at
the raw data is also useful for examining the results of clustering the
data. For example, we can produce a scatterplot matrix with observa-
tions identified by their cluster number from the three group solution
from average linkage:

cluster gen g3al=groups(3), name(cl)
graph matrix y1-y5, mlabel(g3al) mlabpos(0) msymbol(i)
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(see Figure 15.5). The separation between the three groups is most
distinct in the panel for greatest length of skull y1 versus face breadth
y5.
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Figure 15.5: Scatterplot matrix with observations identified by their
cluster number.

The data as originally collected by Colonel Waddell were thought
to consist of two types of skulls; the first type, skulls 1-17, came from
graves in Sikkim and the neighboring areas of Tibet. The remaining
15 skulls were picked up on a battlefield in the Lhasa district and were
believed to be those of native soldiers from the eastern province of
Khams. These skulls were of particular interest because it was thought
at the time that Tibetans from Khams might be survivors of a partic-
ular fundamental human type, unrelated to the Mongolian and Indian
types which surrounded them. We can compare this classification with
the two group solutions given by each of the three clustering methods
by cross-tabulating the corresponding categorical variables containing
group membership. The Stata code for this is:

gen cl2 = cond(id<=17,1,2)

© 2004 by CRC Press LLC 



cluster gen g2sl=groups(2), name(sl)
cluster gen g2cl=groups(2), name(cl)
cluster gen g2al=groups(2), name(al)
tab cl2 g2sl, row

(see Display 15.7),

Key

frequency
row percentage

g2sl
cl2 1 2 Total

1 0 17 17
0.00 100.00 100.00

2 1 14 15
6.67 93.33 100.00

Total 1 31 32
3.13 96.88 100.00

Display 15.7

tab cl2 g2cl, row

(see Display 15.8), and

tab cl2 g2al, row

(see Display 15.9). The two group solution from single linkage consists
of 31 observations in one group and only a single observation in the
second group, again illustrating the chaining problem associated with
this method. The complete linkage solution provides the closest match
to the division originally proposed for the skulls.

15.3.2 Air pollution

In this section we shall apply k-means clustering to the air pollution
data from Chapter 3. We will use the variables temp, manuf, pop, wind,
precip, and days for the cluster analysis. Since these variables have
very different metrics we shall begin by standardizing them

infile str10 town so2 temp manuf pop wind precip days /*
*/ using usair.dat, clear
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Key

frequency
row percentage

g2cl
cl2 1 2 Total

1 3 14 17
17.65 82.35 100.00

2 10 5 15
66.67 33.33 100.00

Total 13 19 32
40.63 59.38 100.00

Display 15.8

Key

frequency
row percentage

g2al
cl2 1 2 Total

1 11 6 17
64.71 35.29 100.00

2 15 0 15
100.00 0.00 100.00

Total 26 6 32
81.25 18.75 100.00

Display 15.9
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foreach var of varlist temp manuf pop wind precip days {
egen s‘var’ = std(‘var’)

}

We will now use the k-means algorithm to divide the data into 2,
3, 4, and 5 groups using the default for choosing initial cluster centers,
namely the random selection of k unique observations from among those
to be clustered. The necessary code is

cluster kmeans stemp smanuf spop swind sprecip sdays, k(2) /*
*/ name(cluster2)

cluster kmeans stemp smanuf spop swind sprecip sdays, k(3) /*
*/ name(cluster3)

cluster kmeans stemp smanuf spop swind sprecip sdays, k(4) /*
*/ name(cluster4)

cluster kmeans stemp smanuf spop swind sprecip sdays, k(5) /*
*/ name(cluster5)

We can now use the Calinski and Harabasz approach to selecting
the optimal number of groups:

cluster stop cluster2

Calinski/
Number of Harabasz
clusters pseudo-F

2 6.44

cluster stop cluster3

Calinski/
Number of Harabasz
clusters pseudo-F

3 9.04

cluster stop cluster4

Calinski/
Number of Harabasz
clusters pseudo-F

4 12.38
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cluster stop cluster5

Calinski/
Number of Harabasz
clusters pseudo-F

5 16.34

The largest value of the Calinski and Harabasz index corresponds
to the five group solution. Details of this solution can be found from

sort cluster5 town
forvalues i=1/5 {

disp " "
disp "cluster ‘i’"
list town if cluster5==‘i’, noobs noheader separator(0)

}

The output is shown in Display 15.10. We will use the tabstat com-
mand to tabulate the means, as the table command can only tabulate
up to five statistics:

tabstat temp manuf pop wind precip days, by(cluster5) /*
*/ nototal format(%4.1f)

(see Display 15.11).
We will now compare pollution levels (the annual mean concentra-

tion of sulphur dioxide so2) between these five clusters of towns. The
means and standard deviations can be tabulated using

table cluster5, contents(mean so2 sd so2) format(%4.1f)

(see Display 15.12). Clusters 4 and 5 appear to have extremely high
pollution levels and cluster 3 a relatively low level. A more formal
analysis of differences in pollution levels among the clusters can be un-
dertaken using a one-way analysis of variance. (Note that the variable
so2 did not contribute to the cluster analysis. If it had, it would be
circular and invalid to carry out the analysis of variance.) We will first
log-transform so2 since the standard deviations appear to increase with
the mean.

gen lso2 = ln(so2)
anova so2 cluster5

(see Display 15.13). The analysis shows that the clusters differ signifi-
cantly in their average pollution levels, F4,36 = 5.16, p = 0.002.
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Display 15.10
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Summary statistics: mean
by categories of: cluster5

cluster5 temp manuf pop wind precip days

1 57.3 260.6 446.6 8.3 12.7 67.2
2 57.4 346.5 501.8 10.1 39.3 101.9
3 70.3 317.0 614.5 9.3 54.8 115.0
4 48.7 1252.3 1358.1 10.8 33.1 135.3
5 52.9 268.6 364.2 8.6 40.2 131.1

Display 15.11

cluster5 mean(so2) sd(so2)

1 15.6 7.4
2 22.7 15.5
3 10.8 2.2
4 47.9 35.3
5 38.8 20.9

Display 15.12

Number of obs = 41 R-squared = 0.3646
Root MSE = 19.7221 Adj R-squared = 0.2940

Source Partial SS df MS F Prob > F

Model 8035.24113 4 2008.81028 5.16 0.0022

cluster5 8035.24113 4 2008.81028 5.16 0.0022

Residual 14002.6613 36 388.962814

Total 22037.9024 40 550.947561

Display 15.13
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15.4 Exercises

1. Repeat the analyses of the Tibetan skull data described in the
chapter using the Manhattan distance measure rather than the Eu-
clidean. Compare the two sets of results.

2. Investigate the use of other options for determining an initial par-
tition when applying k-means to the air pollution data.

3. Compare the results from k-medians cluster analysis applied to the
air pollution data with those from k-means.
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Chapter

Appendix: Answers to

Selected Exercises

Chapter 1

2. Assuming that the data are stored in the directory c:\user,

cd c:\user
insheet using test.dat, clear

4. label define s 1 male 2 female
label values sex s

5. gen id = _n

6. rename v1 time1
rename v2 time2
rename v3 time3

or

forval i = 1/3 {
rename var`i´ time`i´

}

7. reshape long time, i(id) j(occ)

8. egen d = mean(time), by(id)
replace d = (time-d)^2

9. drop if occ==3&id==2
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Chapter 2

1. table depress, contents(mean weight)

2. foreach var in iq age weight {
table life, contents(mean `var´ sd `var´)

}

3. search mann
help signrank

4. ranksum weight, by(life)

5. twoway (scatter iq age if life==1, msymbol(circle) /*
*/ mcolor(black) jitter(2)) /*
*/ (scatter iq age if life==2, msymbol(x) /*
*/ mcolor(black) jitter(2)), /*
*/ legend(order(1 "no" 2 "yes"))

6. Save the commands in the Review window and edit the file using
the Do-file Editor or any text editor, e.g., Notepad. Add the com-
mands given in the do-file template in Section 1.10, and save the
file with the extension .do. Run the file by typing the command
do filename.

Chapter 4

1. infile bp11 bp12 bp13 bp01 bp02 bp03 using bp.raw

Now follow the commands on pages 80 to 81. There is no need to
redefine labels, but if you wish to do so, first issue the command
label drop all.

2. graph box bp, over(drug)
graph box bp, over(diet)
graph box bp, over(biofeed)

4. sort id
save bp
infile id age using age.dat, clear
sort id
merge id using bp
anova bp drug diet biofeed age, continuous(age)

Chapter 5

1. anova resp cond*status status cond, sequential
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2. gen dcond = cond - 1
gen dstat = status - 1
gen dinter = dcond*dstat
regress resp dcond dstat dinter

3. xi: regress resp i.cond*i.status

4. char cond[omit] 2
char status[omit] 2
xi: regress resp i.cond*i.status

Chapter 6

1. ologit outc therapy sex [fweight=fr], table

2. a. ologit depress life
b. replace life = life - 1

logistic life depress

3. Even if we use very lenient inclusion and exclusion criteria,

sw logistic life depress anxiety iq sex sleep, /*
*/ pr(0.2) pe(0.1) forward

only depress is selected. If we exclude depress from the list of
candidate variables, anxiety and sleep are selected.

4. bprobit pres tot ck
predict predp
twoway (line predp ck) (scatter prop ck), /*
*/ ytitle("Probability")

twoway (function y=norm(_b[_cons]+_b[ck]*x), /*
*/ range(0 480)) (scatter prop ck), /*
*/ ytitle("Probability")

Chapter 7

1. xi: glm resp i.cond i.status, fam(gauss) link(id)
local dev1 = e(deviance)
xi: glm resp i.cond, fam(gauss) link(id)
local dev2 = e(deviance)
local ddev = `dev2´-`dev1´
/* F-test equivalent to anova cond status, sequential */
local f = (`ddev´/1)/(`dev1´/31)
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disp `f´
disp fprob(1,31,`f´)
/* difference in deviance */
disp `ddev´
disp chiprob(1, `ddev´)

2. reg resp status, robust
ttest resp, by(status) unequal

3. gen cleth = class*ethnic
glm days class ethnic cleth, fam(poiss) link(log)

4. glm days class ethnic if stres<4, fam(poiss) link(log)

or, assuming the sort order of the data has not changed,

glm days class ethnic if _n!=72, fam(poiss) link(log)

5. gen abs = cond(days>=14,1,0)
glm abs class ethnic, fam(binomial) link(logit)
glm abs class ethnic, fam(binomial) link(probit)

6. logit abs class ethnic, robust
probit abs class ethnic, robust
bs "logit abs class ethnic" "_b[class] _b[ethnic]", /*
*/ reps(500)

bs "probit abs class ethnic" "_b[class] _b[ethnic]", /*
*/ reps(500)

Chapter 8

1. graph box dep1-dep6, by(group)

2. We can obtain the mean over visits for subjects with complete data
using the simple command (data in ‘wide’ form)

gen av2 = (dep1+dep2+dep3+dep4+dep5+dep6)/6

For subjects with missing data, av2 will be missing whereas the
rmean() egen function would return the mean of all available data.
The t-tests are obtained using

ttest av2, by(group)
ttest av2, by(group) unequal

3. egen max = rmax(dep1-dep6)
ttest max, by(group)

4. a. gen diff = avg-pre
ttest diff, by(group)

b. anova avg group pre, continuous(pre)
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Chapter 9

2. use madras, clear
reshape long y, i(id) j(month)
label variable month /*
*/ "Number of months since hospitalization"

gen month_early = month*early
label define e 0 "Late onset" 1 "Early onset"
label values early e

gllamm y month early month_early, i(id) /*
*/ link(logit) family(binom) eform adapt

gllapred prob1, mu
sort id month
twoway (line prob1 month, connect(ascending)), /*
*/ by(early) ytitle(Predicted probability)

gen cons = 1
eq slope: month
eq inter: cons
gllamm y month early month_early, i(id) nrf(2) /*
*/ eqs(inter slope) link(logit) family(binom) /*
*/ eform adapt

gllapred prob2, mu
sort id month
twoway (line prob2 month, connect(ascending)), /*
*/ by(early) ytitle(Predicted probability)

3. use quine, clear
encode eth, gen(ethnic)
drop eth
encode sex, gen(gender)
drop sex
encode age, gen(class)
drop age
encode lrn, gen(slow)
drop lrn

gen id=_n
gllamm days class ethnic, i(id) adapt family(pois)

4. use epil, clear
gen y0 = baseline
reshape long y, i(subj) j(visit)
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gen post = visit>0
gen tr_post = treat*post
gen lnobs = cond(visit==0,ln(8),ln(2))
gllamm y age treat post tr_post, i(subj) /*
*/ family(pois) offset(lnobs) adapt

Chapter 10

2. a. infile subj group dep0 dep1 dep2 dep3 dep4 dep5 dep6 /*
*/ using depress.dat

mvdecode _all, mv(-9)
reshape long dep, i(subj) j(visit)
gen gr_vis = group*visit
reg dep group visit gr_vis, robust cluster(subj)

b. bs "reg dep group visit gr_vis" /*
*/ "_b[group] _b[visit] _b[gr_vis]", /*
*/ cluster(subj) reps(500)

4. use madras, clear
reshape long y, i(id) j(month)
label variable month "Number of months since hospitalization"
gen month_early = month*early

xtgee y month early month_early, i(id) link(logit) /*
*/ family(binom) corr(exch)

twoway (function y=1/(1+exp(-_b[_cons]-_b[month]*x /*
*/ -_b[early] - _b[month_early]*x)), range(0 10)), /*
*/ ytitle(Predicted probability) xtitle(Month)

Chapter 11

1. infile v1-v2 using estrogen.dat, clear
gen str8 = cond(_n==1,"ncases1","ncases0")
xpose,clear
gen conestr = 2-_n
reshape long ncases, i(conestr) j(casestr)
expand ncases
sort casestr conestr
gen caseid = _n
expand 2
bysort caseid: gen control = _n-1 /* 1=cont., 0=case */
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gen estr = 0
replace estr = 1 if control==0&casestr==1
replace estr = 1 if control==1&conestr>0
gen cancer = cond(control==0,1,0)

preserve
collapse (sum) estr (mean) casestr , by(caseid)
gen conestr = estr - casestr
tab casestr conestr
restore

clogit cancer estr, group(caseid) or

2. infile str5 age num1 py1 num0 py0 using ihd.dat,clear
gen agegr = _n
reshape long num py, i(agegr) j(exposed)

table exposed, contents(sum num sum py)
iri 28 17 1857.5 2768.9

3. Keeping the data from the previous exercise:

xi: poisson num i.age*exposed, e(py) irr
testparm _IageX*

The interaction is not statistically significant at the 5% level.

4. infile subj y1 y2 y3 y4 treat baseline age /*
*/ using chemo.dat

reshape long y, i(subj) j(week)
expand 2 if week==1
sort subj week
qui by subj: replace week = 0 if _n==1
replace y = baseline if week==0
gen post = week!=1
gen ltime = log(cond(week==0,8,2))
xi: xtgee y i.treat*i.post age , i(subj) t(week) /*
*/ corr(exc) family(pois) scale(x2) offset(ltime)

Chapter 12

1. We consider anyone still at risk after 450 days as being censored
at 450 days and therefore need to make the appropriate changes to
status and time before running Cox regression.

use heroin, clear
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replace status = 0 if time>450
replace time = 450 if time>450
egen zdose = std(dose)
stset time status
stcox zdose prison clinic

2. The model is fitted using

gen dosecat = 0 if dose<.
replace dosecat = 1 if dose>=60 & dose<.
replace dosecat = 2 if dose>=80 & dose<.
xi: stcox i.dosecat i.prison i.clinic, bases(s)

The survival curves for no prison record, clinic 1 are obtained and
plotted using

gen s0 = s if dosecat==0
gen s1 = s^(exp(_b[_Idosecat_1])) if dosecat==1
gen s2 = s^(exp(_b[_Idosecat_2])) if dosecat==2
sort time
graph twoway (line s0 time, connect(stairstep)) /*
*/ (line s1 time, connect(stairstep) clpat(dash)) /*
*/ (line s2 time, connect(stairstep) clpat(dot)), /*
*/ legend(order(1 "<60" 2 "60-79" 3 ">=80"))

Note that the baseline survival curve is the survival curve for some-
one whose covariates are all zero. If we had used clinic instead of
i.clinic above, this would have been meaningless; we would have
had to exponentiate s0, s1, and s2 by b[clinic] to calculate the
survival curves for clinic 1.

3. Treating dose as continuous:

gen clindose = clinic*zdose
stcox zdose clinic clindose prison

Treating dose as categorical:

xi: stcox i.dosecat*i.clinic i.prison
testparm _IdosX*

4. xi: stcox i.dosecat i.prison i.clinic
xi: stcox i.dosecat i.prison i.clinic, efron
xi: stcox i.dosecat i.prison i.clinic, exactm

It makes almost no difference which method is used.
5. stset time, failure(status) id(id)

stsplit, at(failures) strata(clinic)
gen tpris = prison*(t-504)/365.25
stcox dose prison tpris, strata(clinic)
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lrtest, saving(0)
stcox dose prison, strata(clinic)
lrtest

Chapter 13

2. nlcom (sd1: exp([lsd1][_cons])) /*
*/ (sd2: exp([lsd2][_cons])) /*
*/ (p: invlogit([lo1][_cons]))

giving estimates (standard errors) 6.54 (0.82) and 7.06 (1.81) for
the standard deviations and 0.74 (0.07) for the probability.

4. The only thing that is different from fitting a normal distribution
with constant mean is that the mean is now a linear function of
status so that the ml model command changes as shown below:

infile cond status resp using slim.dat, clear
ml model lf mixing1 (xb: resp = status) /lsd
ml maximize, noheader

In linear regression, the mean square error is equal to the sum of
squares divided by the degrees of freedom, n − 2. The maximum
likelihood estimate is equal to the sum of squares divided by n. We
can therefore get the root mean square error for linear regression
using

disp exp([lsd][_cons])*sqrt(e(N)/(e(N)-2))

Note that the standard error of the regression coefficients need to
be corrected by the same factor, i.e.,

disp [xb]_se[status]*sqrt(e(N)/(e(N)-2))

Compare this with the result of

regress resp status

5. Repeat the procedure above but replace the ml model command by

ml model lf mixing1 (resp = status) (lsd: status)

The effect of status on the standard deviation is significant (p =
0.003) which is not too different from the result of

sdtest resp, by(status)

6. capture program drop mixing3
program mixing3

version 8.1
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args lj xb1 xb2 xb3 lo1 lo2 ls1 ls2 ls3

tempvar f1 f2 f3 p1 p2 p3 s1 s2 s3 d

quietly {
gen double `s1´ = exp(`ls1´)
gen double `s2´ = exp(`ls2´)
gen double `s3´ = exp(`ls3´)
gen double `d´ = 1 + exp(`lo1´) + exp(`lo2´)
gen double `p1´ = 1/`d´
gen double `p2´ = exp(`lo1´)/`d´
gen double `p3´ = exp(`lo2´)/`d´

gen double `f1´ = normden($ML_y1,`xb1´,`s1´)
gen double `f2´ = normden($ML_y1,`xb2´,`s2´)
gen double `f2´ = normden($ML_y1,`xb3´,`s3´)

replace `lj´ = ln(`p1´*`f1´ /*
*/ + `p2´*`f2´ + `p3´*`f3´)

}
end

clear
set obs 300
set seed 12345678
gen z = uniform()
gen y = invnorm(uniform())
replace y = y + 5 if z<1/3
replace y = y + 10 if z<2/3&z>=1/3
ml model lf mixing3 (xb1: y=) /*
*/ /xb2 /xb3 /lo1 /lo2 /lsd1 /lsd2 /lsd3

ml init 0 5 10 0 0 0 0 0, copy
ml maximize, noheader trace

Chapter 14

1. pca l500-r4000, cov
score npc1 npc2
twoway scatter npc2 npc1, mlabel(id)

3. capture drop pc*
pca l500-r4000
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score pc1-pc5
graph matrix pc1-pc5

5. infile str10 town so2 temp manuf pop wind precip days /*
*/ using usair.dat

pca temp manuf pop wind precip days
score pc1 pc2
scatter pc2 pc1, mlabel(town) mlabpos(0) ms(i)

6. regress so2 pc1 pc2
gen regline = pc1*_b[pc2]/_b[pc1]
twoway (line regline pc1) /*
*/ (scatter pc2 pc1, mlabel(town) mlabpos(0) ms(i))

Chapter 15

1. infile y1 y2 y3 y4 y5 using tibetan.dat, clear
cluster singlelinkage y1-y5, name(sl) manhattan
cluster completelinkage y1-y5, name(cl) manhattan
cluster averagelinkage y1-y5, name(al) manhattan

Then plot dendrograms, etc.
2. infile str10 town so2 temp manuf pop wind precip /*

*/ days using usair.dat, clear
foreach var of varlist temp manuf pop wind precip days {

egen s`var´ = std(`var´)
}
cluster kmeans stemp smanuf spop swind sprecip sdays, /*
*/ k(5) name(cluster5) start(segments)

The start(segments) option splits the sample into k (here 5) equal
groups and uses the means as starting values.

3. cluster kmedians stemp smanuf spop swind sprecip sdays, /*
*/ k(5) name(cluster5)
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